These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32494618)

  • 21. Rate and State Friction Relation for Nanoscale Contacts: Thermally Activated Prandtl-Tomlinson Model with Chemical Aging.
    Tian K; Goldsby DL; Carpick RW
    Phys Rev Lett; 2018 May; 120(18):186101. PubMed ID: 29775377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlling the nanoscale friction by layered ionic liquid films.
    An R; Qiu X; Shah FU; Riehemann K; Fuchs H
    Phys Chem Chem Phys; 2020 Jul; 22(26):14941-14952. PubMed ID: 32588010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale.
    Deng Z; Smolyanitsky A; Li Q; Feng XQ; Cannara RJ
    Nat Mater; 2012 Dec; 11(12):1032-7. PubMed ID: 23064494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atomic-Scale Superlubricity in Ti
    Zhang Y; Chen X; Arramel ; Augustine KB; Zhang P; Jiang J; Wu Q; Li N
    ACS Omega; 2021 Apr; 6(13):9013-9019. PubMed ID: 33842771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superlubricity using repulsive van der Waals forces.
    Feiler AA; Bergström L; Rutland MW
    Langmuir; 2008 Mar; 24(6):2274-6. PubMed ID: 18278966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular simulations of sliding on SDS surfactant films.
    Hörmann JL; Liu C; Meng Y; Pastewka L
    J Chem Phys; 2023 Jun; 158(24):. PubMed ID: 37377159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adhesion and stable low friction provided by a subnanometer-thick monolayer of a natural polysaccharide.
    Gourdon D; Lin Q; Oroudjev E; Hansma H; Golan Y; Arad S; Israelachvili J
    Langmuir; 2008 Feb; 24(4):1534-40. PubMed ID: 18044936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new mechanism of the interfacial water film dominating low ice friction.
    Zhao Y; Wu Y; Bao L; Zhou F; Liu W
    J Chem Phys; 2022 Dec; 157(23):234703. PubMed ID: 36550039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-dimensional talc as a van der Waals material for solid lubrication at the nanoscale.
    Vasić B; Czibula C; Kratzer M; R A Neves B; Matković A; Teichert C
    Nanotechnology; 2021 Apr; 32(26):. PubMed ID: 33735842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A numerical model for water hydration on nanosurfaces: from friction to hydrophilicity and hydrophobicity.
    Zhang S; Wang Z; Ding C; Lu H; Qu Y; Li YQ; Zhao M; Li W
    Phys Chem Chem Phys; 2023 Jul; 25(29):19788-19794. PubMed ID: 37449776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Origin of Friction in Superlubric Graphite Contacts.
    Qu C; Wang K; Wang J; Gongyang Y; Carpick RW; Urbakh M; Zheng Q
    Phys Rev Lett; 2020 Sep; 125(12):126102. PubMed ID: 33016762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of Sliding Friction Coefficient Based on a Novel Hybrid Molecular-Mechanical Model.
    Zhang X; Zhang Y; Wang J; Sheng C; Li Z
    J Nanosci Nanotechnol; 2018 Aug; 18(8):5551-5557. PubMed ID: 29458609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new methodology for a detailed investigation of quantized friction in ionic liquids.
    Lhermerout R; Perkin S
    Phys Chem Chem Phys; 2020 Jan; 22(2):455-466. PubMed ID: 31781711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of van der Waals interactions on single asperity friction.
    Lessel M; Loskill P; Hausen F; Gosvami NN; Bennewitz R; Jacobs K
    Phys Rev Lett; 2013 Jul; 111(3):035502. PubMed ID: 23909336
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thick Two-Dimensional Water Film Confined between the Atomically Thin Mica Nanosheet and Hydrophilic Substrate.
    Wei C; Zhao W; Shi X; Pei C; Wei P; Zhang J; Li H
    Langmuir; 2019 Apr; 35(15):5130-5139. PubMed ID: 30907594
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Precise, Self-Limited Epitaxy of Ultrathin Organic Semiconductors and Heterojunctions Tailored by van der Waals Interactions.
    Wu B; Zhao Y; Nan H; Yang Z; Zhang Y; Zhao H; He D; Jiang Z; Liu X; Li Y; Shi Y; Ni Z; Wang J; Xu JB; Wang X
    Nano Lett; 2016 Jun; 16(6):3754-9. PubMed ID: 27183049
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On scale dependence in friction: transition from intimate to monolayer-lubricated contact.
    Xu D; Ravi-Chandar K; Liechti KM
    J Colloid Interface Sci; 2008 Feb; 318(2):507-19. PubMed ID: 18001763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generalized Scaling Law of Structural Superlubricity.
    Wang J; Cao W; Song Y; Qu C; Zheng Q; Ma M
    Nano Lett; 2019 Nov; 19(11):7735-7741. PubMed ID: 31646868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural superlubricity in 2D van der Waals heterojunctions.
    Yuan J; Yang R; Zhang G
    Nanotechnology; 2021 Dec; 33(10):. PubMed ID: 34229304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solidification and superlubricity with molecular alkane films.
    Smith AM; Hallett JE; Perkin S
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25418-25423. PubMed ID: 31801880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.