These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32494690)

  • 1. Cation-induced shape programming and morphing in protein-based hydrogels.
    Khoury LR; Slawinski M; Collison DR; Popa I
    Sci Adv; 2020 May; 6(18):eaba6112. PubMed ID: 32494690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.
    Löwenberg C; Balk M; Wischke C; Behl M; Lendlein A
    Acc Chem Res; 2017 Apr; 50(4):723-732. PubMed ID: 28199083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical unfolding of protein domains induces shape change in programmed protein hydrogels.
    Khoury LR; Popa I
    Nat Commun; 2019 Nov; 10(1):5439. PubMed ID: 31784506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape Morphing Directed by Spatially Encoded, Dually Responsive Liquid Crystalline Elastomer Micro-Actuators.
    Liu M; Jin L; Yang S; Wang Y; Murray CB; Yang S
    Adv Mater; 2023 Feb; 35(5):e2208613. PubMed ID: 36341507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape Morphing of Hydrogels in Alternating Magnetic Field.
    Tang J; Yin Q; Qiao Y; Wang T
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):21194-21200. PubMed ID: 31117469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-Laden Multiple-Step and Reversible 4D Hydrogel Actuators to Mimic Dynamic Tissue Morphogenesis.
    Ding A; Jeon O; Tang R; Lee YB; Lee SJ; Alsberg E
    Adv Sci (Weinh); 2021 May; 8(9):2004616. PubMed ID: 33977070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold-programmed shape-morphing structures based on grayscale digital light processing 4D printing.
    Yue L; Sun X; Yu L; Li M; Montgomery SM; Song Y; Nomura T; Tanaka M; Qi HJ
    Nat Commun; 2023 Sep; 14(1):5519. PubMed ID: 37684245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids.
    Jeon SJ; Hauser AW; Hayward RC
    Acc Chem Res; 2017 Feb; 50(2):161-169. PubMed ID: 28181798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photopatterning Crystal Orientation in Shape-Morphing Polymers.
    Jang LK; Abdelrahman MK; Ware TH
    ACS Appl Mater Interfaces; 2021 Nov; ():. PubMed ID: 34723466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smart Bilayer Polyacrylamide/DNA Hybrid Hydrogel Film Actuators Exhibiting Programmable Responsive and Reversible Macroscopic Shape Deformations.
    Bi Y; Du X; He P; Wang C; Liu C; Guo W
    Small; 2020 Oct; 16(42):e1906998. PubMed ID: 32985098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-regulated reversal deformation and locomotion of structurally homogenous hydrogels subjected to constant light illumination.
    Guo K; Yang X; Zhou C; Li C
    Nat Commun; 2024 Feb; 15(1):1694. PubMed ID: 38402204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast and Programmable Shape Memory Hydrogel of Gelatin Soaked in Tannic Acid Solution.
    Yang S; Zhang Y; Wang T; Sun W; Tong Z
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46701-46709. PubMed ID: 32960035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-Infrared Light-Driven Shape-Programmable Hydrogel Actuators Loaded with Metal-Organic Frameworks.
    Zhang X; Xue P; Yang X; Valenzuela C; Chen Y; Lv P; Wang Z; Wang L; Xu X
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11834-11841. PubMed ID: 35192332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Editing the Shape Morphing of Monocomponent Natural Polysaccharide Hydrogel Films.
    Hu H; Huang C; Galluzzi M; Ye Q; Xiao R; Yu X; Du X
    Research (Wash D C); 2021; 2021():9786128. PubMed ID: 34195615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programming Soft Shape-Morphing Systems by Harnessing Strain Mismatch and Snap-Through Bistability: A Review.
    Wu Y; Guo G; Wei Z; Qian J
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable Auxeticity in Hydrogel Metamaterials via Shape-Morphing Unit Cells.
    Skarsetz O; Slesarenko V; Walther A
    Adv Sci (Weinh); 2022 Aug; 9(23):e2201867. PubMed ID: 35748172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecularly-ordered hydrogels with controllable, anisotropic stimulus response.
    Boothby JM; Samuel J; Ware TH
    Soft Matter; 2019 Jun; 15(22):4508-4517. PubMed ID: 31094394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive 3D Printing of Shape-Programmable Liquid Crystal Elastomer Actuators.
    Barnes M; Sajadi SM; Parekh S; Rahman MM; Ajayan PM; Verduzco R
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28692-28699. PubMed ID: 32484325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encoding kirigami bi-materials to morph on target in response to temperature.
    Liu L; Qiao C; An H; Pasini D
    Sci Rep; 2019 Dec; 9(1):19499. PubMed ID: 31862936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.