These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 32494728)

  • 1. 3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency.
    Zhang M; Yu Q; Liu Z; Zhang J; Tan G; Jiao D; Zhu W; Li S; Zhang Z; Yang R; Ritchie RO
    Sci Adv; 2020 May; 6(19):eaba5581. PubMed ID: 32494728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ti
    Xie C; Li H; Yuan B; Gao Y; Luo Z; Zhu M
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28043-28051. PubMed ID: 31310102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive structural reorientation: Developing extraordinary mechanical properties by constrained flexibility in natural materials.
    Liu Z; Zhang Y; Zhang M; Tan G; Zhu Y; Zhang Z; Ritchie RO
    Acta Biomater; 2019 Mar; 86():96-108. PubMed ID: 30639350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradability and Cytocompatibility of 3D-Printed Mg-Ti Interpenetrating Phase Composites.
    Yang X; Huang W; Zhan D; Ren D; Ji H; Liu Z; Wang Q; Zhang N; Zhang Z
    Front Bioeng Biotechnol; 2022; 10():891632. PubMed ID: 35837550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel multifunctional NiTi/Ag hierarchical composite.
    Hao S; Cui L; Jiang J; Guo F; Xiao X; Jiang D; Yu C; Chen Z; Zhou H; Wang Y; Liu Y; Brown DE; Ren Y
    Sci Rep; 2014 Jun; 4():5267. PubMed ID: 24919945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NiTi-Nb micro-trusses fabricated via extrusion-based 3D-printing of powders and transient-liquid-phase sintering.
    Taylor SL; Ibeh AJ; Jakus AE; Shah RN; Dunand DC
    Acta Biomater; 2018 Aug; 76():359-370. PubMed ID: 29890266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoarchitected metal/ceramic interpenetrating phase composites.
    Bauer J; Sala-Casanovas M; Amiri M; Valdevit L
    Sci Adv; 2022 Aug; 8(33):eabo3080. PubMed ID: 35977008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Investigation of a Shape Memory Alloy Micro-Damper for MEMS Applications.
    Pan Q; Cho C
    Sensors (Basel); 2007 Sep; 7(9):1887-1900. PubMed ID: 28903203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delignified Wood-Polymer Interpenetrating Composites Exceeding the Rule of Mixtures.
    Frey M; Schneider L; Masania K; Keplinger T; Burgert I
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35305-35311. PubMed ID: 31454224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-Printing Damage-Tolerant Architected Metallic Materials with Shape Recoverability via Special Deformation Design of Constituent Material.
    Xiong Z; Li M; Hao S; Liu Y; Cui L; Yang H; Cui C; Jiang D; Yang Y; Lei H; Zhang Y; Ren Y; Zhang X; Li J
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39915-39924. PubMed ID: 34396781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneously high stiffness and damping in nanoengineered microtruss composites.
    Meaud J; Sain T; Yeom B; Park SJ; Shoultz AB; Hulbert G; Ma ZD; Kotov NA; Hart AJ; Arruda EM; Waas AM
    ACS Nano; 2014 Apr; 8(4):3468-75. PubMed ID: 24620996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on titanium-magnesium composites with bicontinuous structure fabricated by powder metallurgy and ultrasonic infiltration.
    Jiang S; Huang LJ; An Q; Geng L; Wang XJ; Wang S
    J Mech Behav Biomed Mater; 2018 May; 81():10-15. PubMed ID: 29475149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing.
    Chen K; Kuang X; Li V; Kang G; Qi HJ
    Soft Matter; 2018 Mar; 14(10):1879-1886. PubMed ID: 29459910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of mechanical and microstructural properties of constrained groove pressed nitinol shape memory alloy for biomedical applications.
    Bhardwaj A; Gupta AK; Padisala SK; Poluri K
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():730-742. PubMed ID: 31147045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical metamaterials made of freestanding quasi-BCC nanolattices of gold and copper with ultra-high energy absorption capacity.
    Cheng H; Zhu X; Cheng X; Cai P; Liu J; Yao H; Zhang L; Duan J
    Nat Commun; 2023 Mar; 14(1):1243. PubMed ID: 36871035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpenetrating Hollow Microlattice Metamaterial Enables Efficient Sound-Absorptive and Deformation-Recoverable Capabilities.
    Li Z; Li X; Wang X; Wang Z; Zhai W
    ACS Appl Mater Interfaces; 2023 May; 15(20):24868-24879. PubMed ID: 37086187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of biosilica in materials science: lessons from siliceous biological systems for structural composites.
    Mayer G
    Prog Mol Subcell Biol; 2009; 47():277-94. PubMed ID: 19198782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High strength, low stiffness, porous NiTi with superelastic properties.
    Greiner C; Oppenheimer SM; Dunand DC
    Acta Biomater; 2005 Nov; 1(6):705-16. PubMed ID: 16701851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Damping and High Strength of Graphene-Coated Nickel Hybrid Foams.
    Wang H; Ma C; Zhang W; Cheng HM; Zeng Y
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42690-42696. PubMed ID: 31638382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Periodic bicontinuous composites for high specific energy absorption.
    Lee JH; Wang L; Boyce MC; Thomas EL
    Nano Lett; 2012 Aug; 12(8):4392-6. PubMed ID: 22783965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.