BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 32494967)

  • 1. Tension Strain-Softening and Compression Strain-Stiffening Behavior of Brain White Matter.
    Eskandari F; Shafieian M; Aghdam MM; Laksari K
    Ann Biomed Eng; 2021 Jan; 49(1):276-286. PubMed ID: 32494967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive study on the mechanical properties of different regions of 8-week-old pediatric porcine brain under tension, shear, and compression at various strain rates.
    Li Z; Ji C; Li D; Luo R; Wang G; Jiang J
    J Biomech; 2020 Jan; 98():109380. PubMed ID: 31630775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fitted hyperelastic parameters for Human brain tissue from reported tension, compression, and shear tests.
    Moran R; Smith JH; García JJ
    J Biomech; 2014 Nov; 47(15):3762-6. PubMed ID: 25446271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheological characterization of human brain tissue.
    Budday S; Sommer G; Haybaeck J; Steinmann P; Holzapfel GA; Kuhl E
    Acta Biomater; 2017 Sep; 60():315-329. PubMed ID: 28658600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression.
    Chahine NO; Wang CC; Hung CT; Ateshian GA
    J Biomech; 2004 Aug; 37(8):1251-61. PubMed ID: 15212931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuum damage interactions between tension and compression in osteonal bone.
    Mirzaali MJ; Bürki A; Schwiedrzik J; Zysset PK; Wolfram U
    J Mech Behav Biomed Mater; 2015 Sep; 49():355-69. PubMed ID: 26093346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperelastic modeling of the human brain tissue: Effects of no-slip boundary condition and compressibility on the uniaxial deformation.
    Voyiadjis GZ; Samadi-Dooki A
    J Mech Behav Biomed Mater; 2018 Jul; 83():63-78. PubMed ID: 29684774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Anisotropy vs. Mechanical Anisotropy: The Contribution of Axonal Fibers to the Material Properties of Brain White Matter.
    Eskandari F; Shafieian M; Aghdam MM; Laksari K
    Ann Biomed Eng; 2021 Mar; 49(3):991-999. PubMed ID: 33025318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive experimental study on material properties of human brain tissue.
    Jin X; Zhu F; Mao H; Shen M; Yang KH
    J Biomech; 2013 Nov; 46(16):2795-801. PubMed ID: 24112782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of the human spinal cord under the compressive loading.
    Karimi A; Shojaei A; Tehrani P
    J Chem Neuroanat; 2017 Dec; 86():15-18. PubMed ID: 28720407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An anisotropic hyperelastic constitutive model of brain white matter in biaxial tension and structural-mechanical relationships.
    Labus KM; Puttlitz CM
    J Mech Behav Biomed Mater; 2016 Sep; 62():195-208. PubMed ID: 27214689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variability and anisotropy of mechanical behavior of cortical bone in tension and compression.
    Li S; Demirci E; Silberschmidt VV
    J Mech Behav Biomed Mater; 2013 May; 21():109-20. PubMed ID: 23563047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of brain tissue in tension.
    Miller K; Chinzei K
    J Biomech; 2002 Apr; 35(4):483-90. PubMed ID: 11934417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma.
    Farshad M; Barbezat M; Flüeler P; Schmidlin F; Graber P; Niederer P
    J Biomech; 1999 Apr; 32(4):417-25. PubMed ID: 10213032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bidirectional hyperelastic characterization of brain white matter tissue.
    Yousefsani SA; Karimi MZV
    Biomech Model Mechanobiol; 2023 Apr; 22(2):495-513. PubMed ID: 36550243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressive mechanical characterization of non-human primate spinal cord white matter.
    Jannesar S; Allen M; Mills S; Gibbons A; Bresnahan JC; Salegio EA; Sparrey CJ
    Acta Biomater; 2018 Jul; 74():260-269. PubMed ID: 29729417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visco-hyperelastic characterization of human brain white matter micro-level constituents in different strain rates.
    Ramzanpour M; Hosseini-Farid M; McLean J; Ziejewski M; Karami G
    Med Biol Eng Comput; 2020 Sep; 58(9):2107-2118. PubMed ID: 32671675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics.
    Perepelyuk M; Chin L; Cao X; van Oosten A; Shenoy VB; Janmey PA; Wells RG
    PLoS One; 2016; 11(1):e0146588. PubMed ID: 26735954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.