BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32494967)

  • 21. Towards microstructure-informed material models for human brain tissue.
    Budday S; Sarem M; Starck L; Sommer G; Pfefferle J; Phunchago N; Kuhl E; Paulsen F; Steinmann P; Shastri VP; Holzapfel GA
    Acta Biomater; 2020 Mar; 104():53-65. PubMed ID: 31887455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphological changes in glial cells arrangement under mechanical loading: A quantitative study.
    Eskandari F; Shafieian M; Aghdam MM; Laksari K
    Injury; 2022 Nov; 53(11):3617-3623. PubMed ID: 36089556
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of normal compression on the shear modulus of soft tissue in rheological measurements.
    Ayyildiz M; Cinoglu S; Basdogan C
    J Mech Behav Biomed Mater; 2015 Sep; 49():235-43. PubMed ID: 26042768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rate- and Region-Dependent Mechanical Properties of Göttingen Minipig Brain Tissue in Simple Shear and Unconfined Compression.
    Boiczyk GM; Pearson N; Kote VB; Sundaramurthy A; Subramaniam DR; Rubio JE; Unnikrishnan G; Reifman J; Monson KL
    J Biomech Eng; 2023 Jun; 145(6):. PubMed ID: 36524865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differences in the mechanical behavior of cortical bone between compression and tension when subjected to progressive loading.
    Nyman JS; Leng H; Dong XN; Wang X
    J Mech Behav Biomed Mater; 2009 Dec; 2(6):613-9. PubMed ID: 19716106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanics of human vocal folds layers during finite strains in tension, compression and shear.
    Cochereau T; Bailly L; Orgéas L; Henrich Bernardoni N; Robert Y; Terrien M
    J Biomech; 2020 Sep; 110():109956. PubMed ID: 32827774
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The mechanical behavior of bovine spinal cord white matter under various strain rate conditions: tensile testing and visco-hyperelastic constitutive modeling.
    Jiang F; Sakuramoto I; Nishida N; Onomoto Y; Ohgi J; Chen X
    Med Biol Eng Comput; 2023 Jun; 61(6):1381-1394. PubMed ID: 36708501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical characterization of brain tissue in tension at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2014 May; 33():43-54. PubMed ID: 23127641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Different regions of bovine deep digital flexor tendon exhibit distinct elastic, but not viscous, mechanical properties under both compression and shear loading.
    Fang F; Sawhney AS; Lake SP
    J Biomech; 2014 Sep; 47(12):2869-77. PubMed ID: 25113805
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative Analysis of Tissue Damage Evolution in Porcine Liver With Interrupted Mechanical Testing Under Tension, Compression, and Shear.
    Chen J; Brazile B; Prabhu R; Patnaik SS; Bertucci R; Rhee H; Horstemeyer MF; Hong Y; Williams LN; Liao J
    J Biomech Eng; 2018 Jul; 140(7):0710101-07101010. PubMed ID: 29715364
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correlating the microstructural architecture and macrostructural behaviour of the brain.
    Hoppstädter M; Püllmann D; Seydewitz R; Kuhl E; Böl M
    Acta Biomater; 2022 Oct; 151():379-395. PubMed ID: 36002124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strain-rate dependent stiffness of articular cartilage in unconfined compression.
    Li LP; Buschmann MD; Shirazi-Adl A
    J Biomech Eng; 2003 Apr; 125(2):161-8. PubMed ID: 12751277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ex-vivo quantification of ovine pia arachnoid complex biomechanical properties under uniaxial tension.
    Conley Natividad G; Theodossiou SK; Schiele NR; Murdoch GK; Tsamis A; Tanner B; Potirniche G; Mortazavi M; Vorp DA; Martin BA
    Fluids Barriers CNS; 2020 Nov; 17(1):68. PubMed ID: 33183314
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Constitutive model for brain tissue under finite compression.
    Laksari K; Shafieian M; Darvish K
    J Biomech; 2012 Feb; 45(4):642-6. PubMed ID: 22281404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic mechanical characterization and viscoelastic modeling of bovine brain tissue.
    Li W; Shepherd DET; Espino DM
    J Mech Behav Biomed Mater; 2021 Feb; 114():104204. PubMed ID: 33218929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Difference analysis of phenomenological models with two variable forms for soft tissue quasi-static mechanical characterization.
    Kang W; Xu P; Yue Y; Wang L; Fan Y
    Comput Biol Med; 2022 Nov; 150():106150. PubMed ID: 36228461
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling the damage-induced softening behavior of brain white matter using a coupled hyperelasticty-damage model.
    He G; Xia B; Feng Y; Chen Y; Fan L; Zhang D
    J Mech Behav Biomed Mater; 2023 May; 141():105753. PubMed ID: 36898357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ratchetting of porcine skin under uniaxial cyclic loading.
    Kang G; Wu X
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):498-506. PubMed ID: 21316638
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Micromechanics of brain white matter tissue: A fiber-reinforced hyperelastic model using embedded element technique.
    Yousefsani SA; Shamloo A; Farahmand F
    J Mech Behav Biomed Mater; 2018 Apr; 80():194-202. PubMed ID: 29428702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.