These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
386 related articles for article (PubMed ID: 32495039)
1. Protein Corona-Enabled Systemic Delivery and Targeting of Nanoparticles. Chen D; Ganesh S; Wang W; Amiji M AAPS J; 2020 Jun; 22(4):83. PubMed ID: 32495039 [TBL] [Abstract][Full Text] [Related]
2. Plasma protein adsorption and biological identity of systemically administered nanoparticles. Chen D; Ganesh S; Wang W; Amiji M Nanomedicine (Lond); 2017 Sep; 12(17):2113-2135. PubMed ID: 28805542 [TBL] [Abstract][Full Text] [Related]
3. The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system. Xiao W; Gao H Int J Pharm; 2018 Dec; 552(1-2):328-339. PubMed ID: 30308270 [TBL] [Abstract][Full Text] [Related]
4. Formation of the Protein Corona: The Interface between Nanoparticles and the Immune System. Barbero F; Russo L; Vitali M; Piella J; Salvo I; Borrajo ML; Busquets-Fité M; Grandori R; Bastús NG; Casals E; Puntes V Semin Immunol; 2017 Dec; 34():52-60. PubMed ID: 29066063 [TBL] [Abstract][Full Text] [Related]
5. Protein corona formation in bronchoalveolar fluid enhances diesel exhaust nanoparticle uptake and pro-inflammatory responses in macrophages. Shaw CA; Mortimer GM; Deng ZJ; Carter ES; Connell SP; Miller MR; Duffin R; Newby DE; Hadoke PW; Minchin RF Nanotoxicology; 2016 Sep; 10(7):981-91. PubMed ID: 27027807 [TBL] [Abstract][Full Text] [Related]
6. Understanding the Chemical Nature of Nanoparticle-Protein Interactions. Baimanov D; Cai R; Chen C Bioconjug Chem; 2019 Jul; 30(7):1923-1937. PubMed ID: 31259537 [TBL] [Abstract][Full Text] [Related]
7. Evolution of Nanoparticle Protein Corona across the Blood-Brain Barrier. Cox A; Andreozzi P; Dal Magro R; Fiordaliso F; Corbelli A; Talamini L; Chinello C; Raimondo F; Magni F; Tringali M; Krol S; Jacob Silva P; Stellacci F; Masserini M; Re F ACS Nano; 2018 Jul; 12(7):7292-7300. PubMed ID: 29953205 [TBL] [Abstract][Full Text] [Related]
8. The role of apolipoprotein- and vitronectin-enriched protein corona on lipid nanoparticles for in vivo targeted delivery and transfection of oligonucleotides in murine tumor models. Chen D; Parayath N; Ganesh S; Wang W; Amiji M Nanoscale; 2019 Oct; 11(40):18806-18824. PubMed ID: 31595922 [TBL] [Abstract][Full Text] [Related]
9. Protein Nanoparticle Charge and Hydrophobicity Govern Protein Corona and Macrophage Uptake. Pustulka SM; Ling K; Pish SL; Champion JA ACS Appl Mater Interfaces; 2020 Oct; 12(43):48284-48295. PubMed ID: 33054178 [TBL] [Abstract][Full Text] [Related]
10. Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles. Partikel K; Korte R; Stein NC; Mulac D; Herrmann FC; Humpf HU; Langer K Eur J Pharm Biopharm; 2019 Aug; 141():70-80. PubMed ID: 31082511 [TBL] [Abstract][Full Text] [Related]
11. Regulation of Macrophage Recognition through the Interplay of Nanoparticle Surface Functionality and Protein Corona. Saha K; Rahimi M; Yazdani M; Kim ST; Moyano DF; Hou S; Das R; Mout R; Rezaee F; Mahmoudi M; Rotello VM ACS Nano; 2016 Apr; 10(4):4421-30. PubMed ID: 27040442 [TBL] [Abstract][Full Text] [Related]
12. Nanoparticle-Protein Interaction: The Significance and Role of Protein Corona. Ahsan SM; Rao CM; Ahmad MF Adv Exp Med Biol; 2018; 1048():175-198. PubMed ID: 29453539 [TBL] [Abstract][Full Text] [Related]
13. Protein corona, understanding the nanoparticle-protein interactions and future perspectives: A critical review. Kopac T Int J Biol Macromol; 2021 Feb; 169():290-301. PubMed ID: 33340622 [TBL] [Abstract][Full Text] [Related]
14. The nanoparticle protein corona formed in human blood or human blood fractions. Lundqvist M; Augustsson C; Lilja M; Lundkvist K; Dahlbäck B; Linse S; Cedervall T PLoS One; 2017; 12(4):e0175871. PubMed ID: 28414772 [TBL] [Abstract][Full Text] [Related]
15. Formation and Characterization of Protein Corona Around Nanoparticles: A Review. Pareek V; Bhargava A; Bhanot V; Gupta R; Jain N; Panwar J J Nanosci Nanotechnol; 2018 Oct; 18(10):6653-6670. PubMed ID: 29954482 [TBL] [Abstract][Full Text] [Related]
16. The "sweet" side of the protein corona: effects of glycosylation on nanoparticle-cell interactions. Wan S; Kelly PM; Mahon E; Stöckmann H; Rudd PM; Caruso F; Dawson KA; Yan Y; Monopoli MP ACS Nano; 2015 Feb; 9(2):2157-66. PubMed ID: 25599105 [TBL] [Abstract][Full Text] [Related]
17. The Influence of Nanoparticle Shape on Protein Corona Formation. Madathiparambil Visalakshan R; González García LE; Benzigar MR; Ghazaryan A; Simon J; Mierczynska-Vasilev A; Michl TD; Vinu A; Mailänder V; Morsbach S; Landfester K; Vasilev K Small; 2020 Jun; 16(25):e2000285. PubMed ID: 32406176 [TBL] [Abstract][Full Text] [Related]
18. Surface roughness influences the protein corona formation of glycosylated nanoparticles and alter their cellular uptake. Piloni A; Wong CK; Chen F; Lord M; Walther A; Stenzel MH Nanoscale; 2019 Dec; 11(48):23259-23267. PubMed ID: 31782458 [TBL] [Abstract][Full Text] [Related]
19. Carbohydrate-Based Nanocarriers Exhibiting Specific Cell Targeting with Minimum Influence from the Protein Corona. Kang B; Okwieka P; Schöttler S; Winzen S; Langhanki J; Mohr K; Opatz T; Mailänder V; Landfester K; Wurm FR Angew Chem Int Ed Engl; 2015 Jun; 54(25):7436-40. PubMed ID: 25940402 [TBL] [Abstract][Full Text] [Related]
20. Formation and biological effects of protein corona for food-related nanoparticles. Cui G; Su W; Tan M Compr Rev Food Sci Food Saf; 2022 Mar; 21(2):2002-2031. PubMed ID: 34716644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]