BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32495155)

  • 21. Post-processing radio-frequency signal based on deep learning method for ultrasonic microbubble imaging.
    Dai M; Li S; Wang Y; Zhang Q; Yu J
    Biomed Eng Online; 2019 Sep; 18(1):95. PubMed ID: 31511011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A deep learning approach for converting prompt gamma images to proton dose distributions: A Monte Carlo simulation study.
    Liu CC; Huang HM
    Phys Med; 2020 Jan; 69():110-119. PubMed ID: 31869575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization.
    Dong X; Niu T; Zhu L
    Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Noise and spatial resolution properties of a commercially available deep learning-based CT reconstruction algorithm.
    Solomon J; Lyu P; Marin D; Samei E
    Med Phys; 2020 Sep; 47(9):3961-3971. PubMed ID: 32506661
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic segmentation of the carotid artery and internal jugular vein from 2D ultrasound images for 3D vascular reconstruction.
    Groves LA; VanBerlo B; Veinberg N; Alboog A; Peters TM; Chen ECS
    Int J Comput Assist Radiol Surg; 2020 Nov; 15(11):1835-1846. PubMed ID: 32839888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A deep learning method for image-based subject-specific local SAR assessment.
    Meliadò EF; Raaijmakers AJE; Sbrizzi A; Steensma BR; Maspero M; Savenije MHF; Luijten PR; van den Berg CAT
    Magn Reson Med; 2020 Feb; 83(2):695-711. PubMed ID: 31483521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BIRADS features-oriented semi-supervised deep learning for breast ultrasound computer-aided diagnosis.
    Zhang E; Seiler S; Chen M; Lu W; Gu X
    Phys Med Biol; 2020 Jun; 65(12):125005. PubMed ID: 32155605
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
    Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A
    Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of novel AI-based extended field-of-view CT reconstructions.
    Fonseca GP; Baer-Beck M; Fournie E; Hofmann C; Rinaldi I; Ollers MC; van Elmpt WJC; Verhaegen F
    Med Phys; 2021 Jul; 48(7):3583-3594. PubMed ID: 33978240
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep-Learning Based Adaptive Ultrasound Imaging From Sub-Nyquist Channel Data.
    Mamistvalov A; Amar A; Kessler N; Eldar YC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 May; 69(5):1638-1648. PubMed ID: 35312618
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep learning for hetero-homo conversion in channel-domain for phase aberration correction in ultrasound imaging.
    Koike T; Tomii N; Watanabe Y; Azuma T; Takagi S
    Ultrasonics; 2023 Mar; 129():106890. PubMed ID: 36462461
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DeepUCT: Complex cascaded deep learning network for improved ultrasound tomography.
    Prasad S; Almekkawy M
    Phys Med Biol; 2022 Mar; 67(6):. PubMed ID: 35130522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complex Transformer Network for Single-Angle Plane-Wave Imaging.
    Qu X; Ren C; Wang Z; Fan S; Zheng D; Wang S; Lin H; Jiang J; Xing W
    Ultrasound Med Biol; 2023 Oct; 49(10):2234-2246. PubMed ID: 37544831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients.
    Kwon K; Kim D; Kim B; Park H
    Magn Reson Med; 2020 Jan; 83(1):124-138. PubMed ID: 31403219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep-learning-based direct inversion for material decomposition.
    Gong H; Tao S; Rajendran K; Zhou W; McCollough CH; Leng S
    Med Phys; 2020 Dec; 47(12):6294-6309. PubMed ID: 33020942
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improvising limitations of DNN based ultrasound image reconstruction.
    Balendra ; Halder RS; Sahani A
    Phys Eng Sci Med; 2022 Dec; 45(4):1139-1151. PubMed ID: 36173589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep Learning-Based Photoacoustic Imaging of Vascular Network Through Thick Porous Media.
    Gao Y; Xu W; Chen Y; Xie W; Cheng Q
    IEEE Trans Med Imaging; 2022 Aug; 41(8):2191-2204. PubMed ID: 35294347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography.
    Park JC; Zhang H; Chen Y; Fan Q; Li JG; Liu C; Lu B
    Phys Med Biol; 2015 Dec; 60(23):9157-83. PubMed ID: 26562284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep Learning of Spatiotemporal Filtering for Fast Super-Resolution Ultrasound Imaging.
    Brown KG; Ghosh D; Hoyt K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Sep; 67(9):1820-1829. PubMed ID: 32305911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep learning for radial SMS myocardial perfusion reconstruction using the 3D residual booster U-net.
    Le J; Tian Y; Mendes J; Wilson B; Ibrahim M; DiBella E; Adluru G
    Magn Reson Imaging; 2021 Nov; 83():178-188. PubMed ID: 34428512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.