These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 32495483)

  • 21. Ultrahigh-Quality Infrared Polaritonic Resonators Based on Bottom-Up-Synthesized van der Waals Nanoribbons.
    Yu SJ; Jiang Y; Roberts JA; Huber MA; Yao H; Shi X; Bechtel HA; Gilbert Corder SN; Heinz TF; Zheng X; Fan JA
    ACS Nano; 2022 Feb; 16(2):3027-3035. PubMed ID: 35041379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities.
    Dai Z; Hu G; Si G; Ou Q; Zhang Q; Balendhran S; Rahman F; Zhang BY; Ou JZ; Li G; Alù A; Qiu CW; Bao Q
    Nat Commun; 2020 Nov; 11(1):6086. PubMed ID: 33257664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isotopic effects on in-plane hyperbolic phonon polaritons in MoO
    Schultz JF; Krylyuk S; Schwartz JJ; Davydov AV; Centrone A
    Nanophotonics; 2024; 13(9):1581-92. PubMed ID: 38846933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient and Tunable Reflection of Phonon Polaritons at Built-In Intercalation Interfaces.
    Wu Y; Ou Q; Dong S; Hu G; Si G; Dai Z; Qiu CW; Fuhrer MS; Mokkapati S; Bao Q
    Adv Mater; 2021 Jul; 33(26):e2008070. PubMed ID: 33998712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlling and Focusing In-Plane Hyperbolic Phonon Polaritons in α-MoO
    Zheng Z; Jiang J; Xu N; Wang X; Huang W; Ke Y; Zhang S; Chen H; Deng S
    Adv Mater; 2022 Feb; 34(6):e2104164. PubMed ID: 34791711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable phonon-plasmon hybridization in α-MoO
    Yadav A; Kumari R; Varshney SK; Lahiri B
    Opt Express; 2021 Oct; 29(21):33171-33183. PubMed ID: 34809134
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tunable heterostructural prism for planar polaritonic switch.
    Zhao Y; Li G; Yao Y; Chen J; Xue M; Bao L; Jin K; Ge C; Chen J
    Sci Bull (Beijing); 2023 Aug; 68(16):1757-1763. PubMed ID: 37507260
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Twist-tunable polaritonic nanoresonators in a van der Waals crystal.
    Matveeva OG; Tresguerres-Mata AIF; Kirtaev RV; Voronin KV; Taboada-Gutiérrez J; Lanza C; Duan J; Martín-Sánchez J; Volkov VS; Alonso-González P; Nikitin AY
    NPJ 2D Mater Appl; 2023; 7(1):31. PubMed ID: 38665481
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lithography-free IR polarization converters via orthogonal in-plane phonons in α-MoO
    Abedini Dereshgi S; Folland TG; Murthy AA; Song X; Tanriover I; Dravid VP; Caldwell JD; Aydin K
    Nat Commun; 2020 Nov; 11(1):5771. PubMed ID: 33188172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoscale Guiding of Infrared Light with Hyperbolic Volume and Surface Polaritons in van der Waals Material Ribbons.
    Dolado I; Alfaro-Mozaz FJ; Li P; Nikulina E; Bylinkin A; Liu S; Edgar JH; Casanova F; Hueso LE; Alonso-González P; Vélez S; Nikitin AY; Hillenbrand R
    Adv Mater; 2020 Mar; 32(9):e1906530. PubMed ID: 31977111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Germanium Monosulfide as a Natural Platform for Highly Anisotropic THz Polaritons.
    Nörenberg T; Álvarez-Pérez G; Obst M; Wehmeier L; Hempel F; Klopf JM; Nikitin AY; Kehr SC; Eng LM; Alonso-González P; de Oliveira TVAG
    ACS Nano; 2022 Dec; 16(12):20174-20185. PubMed ID: 36446407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Twisted Nano-Optics: Manipulating Light at the Nanoscale with Twisted Phonon Polaritonic Slabs.
    Duan J; Capote-Robayna N; Taboada-Gutiérrez J; Álvarez-Pérez G; Prieto I; Martín-Sánchez J; Nikitin AY; Alonso-González P
    Nano Lett; 2020 Jul; 20(7):5323-5329. PubMed ID: 32530634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amplitude- and Phase-Resolved Infrared Nanoimaging and Nanospectroscopy of Polaritons in a Liquid Environment.
    Virmani D; Bylinkin A; Dolado I; Janzen E; Edgar JH; Hillenbrand R
    Nano Lett; 2021 Feb; 21(3):1360-1367. PubMed ID: 33511844
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Infrared hyperbolic metasurface based on nanostructured van der Waals materials.
    Li P; Dolado I; Alfaro-Mozaz FJ; Casanova F; Hueso LE; Liu S; Edgar JH; Nikitin AY; Vélez S; Hillenbrand R
    Science; 2018 Feb; 359(6378):892-896. PubMed ID: 29472478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation.
    Taboada-Gutiérrez J; Álvarez-Pérez G; Duan J; Ma W; Crowley K; Prieto I; Bylinkin A; Autore M; Volkova H; Kimura K; Kimura T; Berger MH; Li S; Bao Q; Gao XPA; Errea I; Nikitin AY; Hillenbrand R; Martín-Sánchez J; Alonso-González P
    Nat Mater; 2020 Sep; 19(9):964-968. PubMed ID: 32284598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mid-infrared biaxial hyperbolic van der Waals crystal.
    Zheng Z; Xu N; Oscurato SL; Tamagnone M; Sun F; Jiang Y; Ke Y; Chen J; Huang W; Wilson WL; Ambrosio A; Deng S; Chen H
    Sci Adv; 2019 May; 5(5):eaav8690. PubMed ID: 31139747
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical switching of low-loss phonon polaritons in α-MoO
    Wu Y; Ou Q; Yin Y; Li Y; Ma W; Yu W; Liu G; Cui X; Bao X; Duan J; Álvarez-Pérez G; Dai Z; Shabbir B; Medhekar N; Li X; Li CM; Alonso-González P; Bao Q
    Nat Commun; 2020 May; 11(1):2646. PubMed ID: 32461577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope.
    Govyadinov AA; Konečná A; Chuvilin A; Vélez S; Dolado I; Nikitin AY; Lopatin S; Casanova F; Hueso LE; Aizpurua J; Hillenbrand R
    Nat Commun; 2017 Jul; 8(1):95. PubMed ID: 28733660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deeply subwavelength phonon-polaritonic crystal made of a van der Waals material.
    Alfaro-Mozaz FJ; Rodrigo SG; Alonso-González P; Vélez S; Dolado I; Casanova F; Hueso LE; Martín-Moreno L; Hillenbrand R; Nikitin AY
    Nat Commun; 2019 Jan; 10(1):42. PubMed ID: 30604741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficiency of Launching Highly Confined Polaritons by Infrared Light Incident on a Hyperbolic Material.
    Dai S; Ma Q; Yang Y; Rosenfeld J; Goldflam MD; McLeod A; Sun Z; Andersen TI; Fei Z; Liu M; Shao Y; Watanabe K; Taniguchi T; Thiemens M; Keilmann F; Jarillo-Herrero P; Fogler MM; Basov DN
    Nano Lett; 2017 Sep; 17(9):5285-5290. PubMed ID: 28805397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.