These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32495539)

  • 1. Fast intelligent cell phenotyping for high-throughput optofluidic time-stretch microscopy based on the XGBoost algorithm.
    Zhao W; Guo Y; Yang S; Chen M; Chen H
    J Biomed Opt; 2020 Jun; 25(6):1-12. PubMed ID: 32495539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput imaging flow cytometry by optofluidic time-stretch microscopy.
    Lei C; Kobayashi H; Wu Y; Li M; Isozaki A; Yasumoto A; Mikami H; Ito T; Nitta N; Sugimura T; Yamada M; Yatomi Y; Di Carlo D; Ozeki Y; Goda K
    Nat Protoc; 2018 Jul; 13(7):1603-1631. PubMed ID: 29976951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Cytometry: Deep learning with Real-time Inference in Cell Sorting and Flow Cytometry.
    Li Y; Mahjoubfar A; Chen CL; Niazi KR; Pei L; Jalali B
    Sci Rep; 2019 Jul; 9(1):11088. PubMed ID: 31366998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intelligent Image De-Blurring for Imaging Flow Cytometry.
    Zhang F; Lei C; Huang CJ; Kobayashi H; Sun CW; Goda K
    Cytometry A; 2019 May; 95(5):549-554. PubMed ID: 31006981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput time-stretch imaging flow cytometry for multi-class classification of phytoplankton.
    Lai QT; Lee KC; Tang AH; Wong KK; So HK; Tsia KK
    Opt Express; 2016 Dec; 24(25):28170-28184. PubMed ID: 27958529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optofluidic time-stretch imaging flow cytometry with a real-time storage rate beyond 5.9 GB/s.
    Hou D; Zhou J; Xiao R; Yang K; Ding Y; Wang D; Wu G; Lei C
    Cytometry A; 2024 Jun; ():. PubMed ID: 38842356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system.
    Zhao W; Wang C; Chen H; Chen M; Yang S
    J Biomed Opt; 2018 Apr; 23(4):1-8. PubMed ID: 29623704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy.
    Guo B; Lei C; Kobayashi H; Ito T; Yalikun Y; Jiang Y; Tanaka Y; Ozeki Y; Goda K
    Cytometry A; 2017 May; 91(5):494-502. PubMed ID: 28399328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optofluidic time-stretch quantitative phase microscopy.
    Guo B; Lei C; Wu Y; Kobayashi H; Ito T; Yalikun Y; Lee S; Isozaki A; Li M; Jiang Y; Yasumoto A; Di Carlo D; Tanaka Y; Yatomi Y; Ozeki Y; Goda K
    Methods; 2018 Mar; 136():116-125. PubMed ID: 29031836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optofluidic time-stretch imaging - an emerging tool for high-throughput imaging flow cytometry.
    Lau AK; Shum HC; Wong KK; Tsia KK
    Lab Chip; 2016 May; 16(10):1743-56. PubMed ID: 27099993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Throughput Accurate Single-Cell Screening of Euglena gracilis with Fluorescence-Assisted Optofluidic Time-Stretch Microscopy.
    Guo B; Lei C; Ito T; Jiang Y; Ozeki Y; Goda K
    PLoS One; 2016; 11(11):e0166214. PubMed ID: 27846239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Imaging Flow Cytometry by Asymmetric-detection Time-stretch Optical Microscopy (ATOM).
    Tang AHL; Lai QTK; Chung BMF; Lee KCM; Mok ATY; Yip GK; Shum AHC; Wong KKY; Tsia KK
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28715367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cell-level quality control workflow for high-throughput image analysis.
    Qiu M; Zhou B; Lo F; Cook S; Chyba J; Quackenbush D; Matzen J; Li Z; Mak PA; Chen K; Zhou Y
    BMC Bioinformatics; 2020 Jul; 21(1):280. PubMed ID: 32615917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell damage evaluation by intelligent imaging flow cytometry.
    Yao Y; He L; Mei L; Weng Y; Huang J; Wei S; Li R; Tian S; Liu P; Ruan X; Wang D; Zhou F; Lei C
    Cytometry A; 2023 Aug; 103(8):646-654. PubMed ID: 36966466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. H-EM: An algorithm for simultaneous cell diameter and intensity quantification in low-resolution imaging cytometry.
    Pardo E; González G; Tucker-Schwartz JM; Dave SR; Malpica N
    PLoS One; 2019; 14(9):e0222265. PubMed ID: 31513616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intelligent sort-timing prediction for image-activated cell sorting.
    Zhao Y; Isozaki A; Herbig M; Hayashi M; Hiramatsu K; Yamazaki S; Kondo N; Ohnuki S; Ohya Y; Nitta N; Goda K
    Cytometry A; 2023 Jan; 103(1):88-97. PubMed ID: 35766305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical time-stretch imaging flow cytometry in the compressed domain.
    Lin S; Li R; Weng Y; Mei L; Wei C; Song C; Wei S; Yao Y; Ruan X; Zhou F; Geng Q; Wang D; Lei C
    J Biophotonics; 2023 Aug; 16(8):e202300096. PubMed ID: 37170719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled minimum-cost flow cell tracking for high-throughput quantitative analysis.
    Padfield D; Rittscher J; Roysam B
    Med Image Anal; 2011 Aug; 15(4):650-68. PubMed ID: 20864383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intelligent frequency-shifted optofluidic time-stretch quantitative phase imaging.
    Wu Y; Zhou Y; Huang CJ; Kobayashi H; Yan S; Ozeki Y; Wu Y; Sun CW; Yasumoto A; Yatomi Y; Lei C; Goda K
    Opt Express; 2020 Jan; 28(1):519-532. PubMed ID: 32118978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy.
    Jiang Y; Lei C; Yasumoto A; Kobayashi H; Aisaka Y; Ito T; Guo B; Nitta N; Kutsuna N; Ozeki Y; Nakagawa A; Yatomi Y; Goda K
    Lab Chip; 2017 Jul; 17(14):2426-2434. PubMed ID: 28627575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.