These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32495806)

  • 1. A simple method for production of hydrophilic, rigid, and sterilized multi-layer 3D integrated polydimethylsiloxane microfluidic chips.
    Oyama TG; Oyama K; Taguchi M
    Lab Chip; 2020 Jun; 20(13):2354-2363. PubMed ID: 32495806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips.
    Zhang M; Wu J; Wang L; Xiao K; Wen W
    Lab Chip; 2010 May; 10(9):1199-203. PubMed ID: 20390140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow lithography in ultraviolet-curable polydimethylsiloxane microfluidic chips.
    Kim J; An H; Seo Y; Jung Y; Lee JS; Choi N; Bong KW
    Biomicrofluidics; 2017 Mar; 11(2):024120. PubMed ID: 28469763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adhesive bonding strategies to fabricate high-strength and transparent 3D printed microfluidic device.
    Kecili S; Tekin HC
    Biomicrofluidics; 2020 Mar; 14(2):024113. PubMed ID: 32341724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in nonbiofouling PDMS surface modification strategies applicable to microfluidic technology.
    Gokaltun A; Yarmush ML; Asatekin A; Usta OB
    Technology (Singap World Sci); 2017 Mar; 5(1):1-12. PubMed ID: 28695160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Desktop aligner for fabrication of multilayer microfluidic devices.
    Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J
    Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic chips controlled with elastomeric microvalve arrays.
    Li N; Sip C; Folch A
    J Vis Exp; 2007; (8):296. PubMed ID: 18989408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-regenerating and hybrid irreversible/reversible PDMS microfluidic devices.
    Shiroma LS; Piazzetta MH; Duarte-Junior GF; Coltro WK; Carrilho E; Gobbi AL; Lima RS
    Sci Rep; 2016 May; 6():26032. PubMed ID: 27181918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices.
    Shakeri A; Khan S; Didar TF
    Lab Chip; 2021 Aug; 21(16):3053-3075. PubMed ID: 34286800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Silicon-Based PDMS-PEG Copolymer Microfluidic Chip for Real-Time Polymerase Chain Reaction Diagnosis.
    Yang S; Xian Q; Liu Y; Zhang Z; Song Q; Gao Y; Wen W
    J Funct Biomater; 2023 Apr; 14(4):. PubMed ID: 37103298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding.
    Wu H; Huang B; Zare RN
    Lab Chip; 2005 Dec; 5(12):1393-8. PubMed ID: 16286971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-grade optical polydimethylsiloxane for microfluidic applications.
    Lovchik RD; Wolf H; Delamarche E
    Biomed Microdevices; 2011 Dec; 13(6):1027-32. PubMed ID: 21786042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid assembly of multilayer microfluidic structures via 3D-printed transfer molding and bonding.
    Glick CC; Srimongkol MT; Schwartz AJ; Zhuang WS; Lin JC; Warren RH; Tekell DR; Satamalee PA; Lin L
    Microsyst Nanoeng; 2016; 2():16063. PubMed ID: 31057842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Patterning of Thermoplastic Elastomers and Robust Bonding to Glass and Thermoplastics for Microfluidic Cell Culture and Organ-on-Chip.
    Schneider S; Brás EJS; Schneider O; Schlünder K; Loskill P
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34070209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel metal-protected plasma treatment for the robust bonding of polydimethylsiloxane.
    Patrito N; McLachlan JM; Faria SN; Chan J; Norton PR
    Lab Chip; 2007 Dec; 7(12):1813-8. PubMed ID: 18030405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetrafluoroethylene-Propylene Elastomer for Fabrication of Microfluidic Organs-on-Chips Resistant to Drug Absorption.
    Sano E; Mori C; Matsuoka N; Ozaki Y; Yagi K; Wada A; Tashima K; Yamasaki S; Tanabe K; Yano K; Torisawa YS
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31752314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Preliminary Experimental Study of Polydimethylsiloxane (PDMS)-To-PDMS Bonding Using Oxygen Plasma Treatment Incorporating Isopropyl Alcohol.
    Tony A; Badea I; Yang C; Liu Y; Wang K; Yang SM; Zhang W
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on Integrated 3D Printing of Microfluidic Chips.
    Wu C; Sun J; Yin B
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Irreversible Bonding of Polydimethylsiloxane-Lithium Niobate using Oxygen Plasma Modification for Surface Acoustic Wave based Microfluidic Application: Theory and Experiment.
    He C; Yao J; Yang C; Wang J; Sun B; Liao G; Shi T; Liu Z
    Small Methods; 2024 May; 8(5):e2301321. PubMed ID: 38054603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.