BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32495960)

  • 1. In Situ Scanning Tunneling Microscopy of Cobalt-Phthalocyanine-Catalyzed CO
    Wang X; Cai ZF; Wang YQ; Feng YC; Yan HJ; Wang D; Wan LJ
    Angew Chem Int Ed Engl; 2020 Sep; 59(37):16098-16103. PubMed ID: 32495960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the Synergistic Effects of Mg
    Wang YQ; Dan XH; Wang X; Yi ZY; Fu J; Feng YC; Hu JS; Wang D; Wan LJ
    J Am Chem Soc; 2022 Nov; 144(43):20126-20133. PubMed ID: 36259686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Molecule Imaging of Iron-Phthalocyanine-Catalyzed Oxygen Reduction Reaction by in Situ Scanning Tunneling Microscopy.
    Gu JY; Cai ZF; Wang D; Wan LJ
    ACS Nano; 2016 Sep; 10(9):8746-50. PubMed ID: 27508323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical control of the structure of two-dimensional supramolecular organization consisting of phthalocyanine and porphyrin on a gold single-crystal surface.
    Suto K; Yoshimoto S; Itaya K
    Langmuir; 2006 Dec; 22(25):10766-76. PubMed ID: 17129058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scanning tunneling microscopy study of the structure and orbital-mediated tunneling spectra of cobalt(II) phthalocyanine and cobalt(II) tetraphenylporphyrin on au(111): mixed composition films.
    Barlow DE; Scudiero L; Hipps KW
    Langmuir; 2004 May; 20(11):4413-21. PubMed ID: 15969147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ scanning tunneling microscopy of molecular assemblies of cobalt(II)- and copper(II)-coordinated tetraphenyl porphine and phthalocyanine on Au(100).
    Yoshimoto S; Tada A; Suto K; Yau SL; Itaya K
    Langmuir; 2004 Apr; 20(8):3159-65. PubMed ID: 15875843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Probing of CO
    Jeong Y; Kim Y; Kim YJ; Park JY
    Adv Sci (Weinh); 2024 Jan; 11(4):e2304735. PubMed ID: 38030415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional supramolecular organization of copper octaethylporphyrin and cobalt phthalocyanine on Au(111): molecular assembly control at an electrochemical interface.
    Yoshimoto S; Higa N; Itaya K
    J Am Chem Soc; 2004 Jul; 126(27):8540-5. PubMed ID: 15238012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular-Scale Mechanistic Investigation of Oxygen Dissociation and Adsorption on Metal Surface-Supported Cobalt Phthalocyanine.
    Nguyen D; Kang G; Hersam MC; Schatz GC; Van Duyne RP
    J Phys Chem Lett; 2019 Jul; 10(14):3966-3971. PubMed ID: 31251623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobalt Phthalocyanine Cross-Linked Polypyrrole for Efficient Electroreduction of Low Concentration CO
    Chen JM; Xie WJ; Yang ZW; He LN
    ChemSusChem; 2022 Dec; 15(23):e202201455. PubMed ID: 36163546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the coordination environment and electronic structure of polymer-encapsulated cobalt phthalocyanine under electrocatalytic CO
    Liu Y; Deb A; Leung KY; Nie W; Dean WS; Penner-Hahn JE; McCrory CCL
    Dalton Trans; 2020 Nov; 49(45):16329-16339. PubMed ID: 32432282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active Sites of Cobalt Phthalocyanine in Electrocatalytic CO
    Rooney CL; Lyons M; Wu Y; Hu G; Wang M; Choi C; Gao Y; Chang CW; Brudvig GW; Feng Z; Wang H
    Angew Chem Int Ed Engl; 2024 Jan; 63(2):e202310623. PubMed ID: 37820079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing effect of cobalt phthalocyanine dispersion on electrocatalytic reduction of CO
    Guo T; Wang X; Xing X; Fu Z; Ma C; Bedane AH; Kong L
    Environ Sci Pollut Res Int; 2023 Dec; 30(58):122755-122773. PubMed ID: 37978121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing CO
    Lin L; Liu T; Xiao J; Li H; Wei P; Gao D; Nan B; Si R; Wang G; Bao X
    Angew Chem Int Ed Engl; 2020 Dec; 59(50):22408-22413. PubMed ID: 32886835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the factors governing the water oxidation reaction pathway of mononuclear and binuclear cobalt phthalocyanine catalysts.
    Huang Q; Chen J; Luan P; Ding C; Li C
    Chem Sci; 2022 Aug; 13(30):8797-8803. PubMed ID: 35975146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Evidence for the Catalytic Process of Cobalt Porphyrin Catalyzed Oxygen Evolution Reaction in Alkaline Solution.
    Wang X; Cai ZF; Wang D; Wan LJ
    J Am Chem Soc; 2019 May; 141(19):7665-7669. PubMed ID: 31050417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailored Local Electronic Environment of Co-N
    Huang M; Chen B; Zhang H; Jin Y; Zhi Q; Yang T; Wang K; Jiang J
    Small Methods; 2024 Apr; ():e2301652. PubMed ID: 38659342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of Highly Reactive Cobalt Phthalocyanine via Electrochemical Activation for Enhanced CO
    Wu X; Zhao JY; Sun JW; Li WJ; Yuan HY; Liu PF; Dai S; Yang HG
    Small; 2023 Jun; 19(23):e2207037. PubMed ID: 36879480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying site-dependent effects of an extra Co atom on electronic states of single Co-phthalocyanine molecule.
    Li J; Li B; Wang Y; Zhao A; Wang B
    J Chem Phys; 2015 Jul; 143(3):034701. PubMed ID: 26203036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sulfonated cobalt phthalocyanine/carbon nanotube hybrid as a bifunctional oxygen electrocatalyst.
    Li C; Huang T; Huang Z; Sun J; Zong C; Yang J; Deng W; Dai F
    Dalton Trans; 2019 Nov; 48(46):17258-17265. PubMed ID: 31710322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.