These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32496490)

  • 21. Efficient enhancement on crystallization and electrochemical performance of LiMn
    Hao J; Hao S; Xie M
    Heliyon; 2022 Dec; 8(12):e12145. PubMed ID: 36561664
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of single-crystalline spinel LiMn2 O4 Nanorods for lithium-ion batteries with high rate capability and long cycle life.
    Xie X; Su D; Sun B; Zhang J; Wang C; Wang G
    Chemistry; 2014 Dec; 20(51):17125-31. PubMed ID: 25339467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced Lithium Transport by Control of Crystal Orientation in Spinel LiMn
    Hendriks R; Cunha DM; Singh DP; Huijben M
    ACS Appl Energy Mater; 2018 Dec; 1(12):7046-7051. PubMed ID: 30613829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery.
    Liu T; Dai A; Lu J; Yuan Y; Xiao Y; Yu L; Li M; Gim J; Ma L; Liu J; Zhan C; Li L; Zheng J; Ren Y; Wu T; Shahbazian-Yassar R; Wen J; Pan F; Amine K
    Nat Commun; 2019 Oct; 10(1):4721. PubMed ID: 31624258
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium-Sulfur Batteries.
    Li G; Huang Q; He X; Gao Y; Wang D; Kim SH; Wang D
    ACS Nano; 2018 Feb; 12(2):1500-1507. PubMed ID: 29376330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facile Controlled Synthesis of Spinel LiMn
    Hai Y; Zhang Z; Liu H; Liao L; Fan P; Wu Y; Lv G; Mei L
    Front Chem; 2019; 7():437. PubMed ID: 31259169
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoscaled LiMn
    Siller V; Gonzalez-Rosillo JC; Eroles MN; Baiutti F; Liedke MO; Butterling M; Attallah AG; Hirschmann E; Wagner A; Morata A; Tarancón A
    ACS Appl Mater Interfaces; 2022 Jul; 14(29):33438-46. PubMed ID: 35830969
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Situ Self-Formed Nanosheet MoS
    Chang U; Lee JT; Yun JM; Lee B; Lee SW; Joh HI; Eom K; Fuller TF
    ACS Nano; 2019 Feb; 13(2):1490-1498. PubMed ID: 30580512
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Constructing a LiPAA interface layer: a new strategy to suppress polysulfide migration and facilitate Li
    Fan X; Chen F; Zhang Y; Lin R; Lin C; Zhan L; Xu X; Ma L; Xu L; Zhou X
    Nanotechnology; 2020 Feb; 31(9):095401. PubMed ID: 31711047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Introducing Artificial Solid Electrolyte Interphase onto the Anode of Aqueous Lithium Energy Storage Systems.
    Ahmed M; Yazdi AZ; Mitha A; Chen P
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30348-30356. PubMed ID: 30091585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of magnetic ordering and Jahn-Teller distortion on the lithiation process of LiMn
    Liu WW; Wang D; Wang Z; Deng J; Lau WM; Zhang Y
    Phys Chem Chem Phys; 2017 Mar; 19(9):6481-6486. PubMed ID: 28197571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Favorable Electrochemical Performance of LiMn
    Wang C; Bai G; Liu X; Li Y
    Langmuir; 2021 Feb; 37(7):2349-2354. PubMed ID: 33556236
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nature of the Electrochemical Properties of Sulphur Substituted LiMn₂O₄ Spinel Cathode Material Studied by Electrochemical Impedance Spectroscopy.
    Bakierska M; Świętosławski M; Dziembaj R; Molenda M
    Materials (Basel); 2016 Aug; 9(8):. PubMed ID: 28773819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High performance LiMn2O4 cathode materials grown with epitaxial layered nanostructure for Li-ion batteries.
    Lee MJ; Lee S; Oh P; Kim Y; Cho J
    Nano Lett; 2014 Feb; 14(2):993-9. PubMed ID: 24392731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In Situ Construction of Spinel Coating on the Surface of a Lithium-Rich Manganese-Based Single Crystal for Inhibiting Voltage Fade.
    Peng H; Zhao SX; Huang C; Yu LQ; Fang ZQ; Wei GD
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11579-11588. PubMed ID: 32057232
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controllable Solid Electrolyte Interphase in Nickel-Rich Cathodes by an Electrochemical Rearrangement for Stable Lithium-Ion Batteries.
    Kim J; Lee J; Ma H; Jeong HY; Cha H; Lee H; Yoo Y; Park M; Cho J
    Adv Mater; 2018 Feb; 30(5):. PubMed ID: 29226554
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems.
    Zhan C; Lu J; Jeremy Kropf A; Wu T; Jansen AN; Sun YK; Qiu X; Amine K
    Nat Commun; 2013; 4():2437. PubMed ID: 24077265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stable Cycling Lithium-Sulfur Solid Batteries with Enhanced Li/Li
    Umeshbabu E; Zheng B; Zhu J; Wang H; Li Y; Yang Y
    ACS Appl Mater Interfaces; 2019 May; 11(20):18436-18447. PubMed ID: 31033273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding the Effect of Al Doping on the Electrochemical Performance Improvement of the LiMn
    Xu W; Zheng Y; Cheng Y; Qi R; Peng H; Lin H; Huang R
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45446-45454. PubMed ID: 34533922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Green
    Wu N; Shi YR; Jia T; Du XN; Yin YX; Xin S; Guo YG
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43200-43205. PubMed ID: 31657547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.