These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32496757)

  • 1. HD-[HD-GYP] Phosphodiesterases: Activities and Evolutionary Diversification within the HD-GYP Family.
    Sun S; Pandelia ME
    Biochemistry; 2020 Jun; 59(25):2340-2350. PubMed ID: 32496757
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Sun S; Wang R; Pandelia ME
    Biochemistry; 2022 Sep; 61(17):1801-1809. PubMed ID: 35901269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A systematic analysis of the in vitro and in vivo functions of the HD-GYP domain proteins of Vibrio cholerae.
    McKee RW; Kariisa A; Mudrak B; Whitaker C; Tamayo R
    BMC Microbiol; 2014 Oct; 14():272. PubMed ID: 25343965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence Conservation, Domain Architectures, and Phylogenetic Distribution of the HD-GYP Type c-di-GMP Phosphodiesterases.
    Galperin MY; Chou SH
    J Bacteriol; 2022 Apr; 204(4):e0056121. PubMed ID: 34928179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and Characterization of a Redox Sensor Phosphodiesterase from
    Kitanishi K; Igarashi J; Matsuoka A; Unno M
    Biochemistry; 2020 Mar; 59(8):983-991. PubMed ID: 32045213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of an unconventional HD-GYP protein from Bdellovibrio reveals the roles of conserved residues in this class of cyclic-di-GMP phosphodiesterases.
    Lovering AL; Capeness MJ; Lambert C; Hobley L; Sockett RE
    mBio; 2011; 2(5):. PubMed ID: 21990613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An HD-GYP cyclic di-guanosine monophosphate phosphodiesterase with a non-heme diiron-carboxylate active site.
    Miner KD; Klose KE; Kurtz DM
    Biochemistry; 2013 Aug; 52(32):5329-31. PubMed ID: 23883166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of functional diversification of the HD-GYP domain revealed by the Pseudomonas aeruginosa PA4781 protein, which displays an unselective bimetallic binding site.
    Rinaldo S; Paiardini A; Stelitano V; Brunotti P; Cervoni L; Fernicola S; Protano C; Vitali M; Cutruzzolà F; Giardina G
    J Bacteriol; 2015 Apr; 197(8):1525-35. PubMed ID: 25691523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of c-di-GMP/cGAMP degrading phosphodiesterase VcEAL: identification of a novel conformational switch and its implication.
    Yadav M; Pal K; Sen U
    Biochem J; 2019 Nov; 476(21):3333-3353. PubMed ID: 31647518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas-Selective Catalytic Regulation by a Newly Identified Globin-Coupled Sensor Phosphodiesterase Containing an HD-GYP Domain from the Human Pathogen
    Kitanishi K; Aoyama N; Shimonaka M
    Biochemistry; 2024 Feb; 63(4):523-532. PubMed ID: 38264987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphodiesterase EdpX1 Promotes Xanthomonas oryzae pv. oryzae Virulence, Exopolysaccharide Production, and Biofilm Formation.
    Xue D; Tian F; Yang F; Chen H; Yuan X; Yang CH; Chen Y; Wang Q; He C
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30217836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypic-genotypic analysis of GGDEF/EAL/HD-GYP domain-encoding genes in Pseudomonas putida.
    Nie H; Xiao Y; He J; Liu H; Nie L; Chen W; Huang Q
    Environ Microbiol Rep; 2020 Feb; 12(1):38-48. PubMed ID: 31691501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress in Understanding the Molecular Basis Underlying Functional Diversification of Cyclic Dinucleotide Turnover Proteins.
    Römling U; Liang ZX; Dow JM
    J Bacteriol; 2017 Mar; 199(5):. PubMed ID: 28031279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of an HD-GYP domain cyclic-di-GMP phosphodiesterase reveals an enzyme with a novel trinuclear catalytic iron centre.
    Bellini D; Caly DL; McCarthy Y; Bumann M; An SQ; Dow JM; Ryan RP; Walsh MA
    Mol Microbiol; 2014 Jan; 91(1):26-38. PubMed ID: 24176013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of Thermotoga maritima HD-GYP.
    Miner KD; Kurtz DM
    Biochemistry; 2016 Feb; 55(6):970-9. PubMed ID: 26786892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover.
    Ryan RP; Fouhy Y; Lucey JF; Crossman LC; Spiro S; He YW; Zhang LH; Heeb S; Cámara M; Williams P; Dow JM
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6712-7. PubMed ID: 16611728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finally! The structural secrets of a HD-GYP phosphodiesterase revealed.
    Wigren E; Liang ZX; Römling U
    Mol Microbiol; 2014 Jan; 91(1):1-5. PubMed ID: 24236493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants.
    Dow JM; Fouhy Y; Lucey JF; Ryan RP
    Mol Plant Microbe Interact; 2006 Dec; 19(12):1378-84. PubMed ID: 17153922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C-di-GMP hydrolysis by Pseudomonas aeruginosa HD-GYP phosphodiesterases: analysis of the reaction mechanism and novel roles for pGpG.
    Stelitano V; Giardina G; Paiardini A; Castiglione N; Cutruzzolà F; Rinaldo S
    PLoS One; 2013; 8(9):e74920. PubMed ID: 24066157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel bacterial l-arginine sensor controlling c-di-GMP levels in Pseudomonas aeruginosa.
    Paiardini A; Mantoni F; Giardina G; Paone A; Janson G; Leoni L; Rampioni G; Cutruzzolà F; Rinaldo S
    Proteins; 2018 Oct; 86(10):1088-1096. PubMed ID: 30040157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.