These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 32497190)

  • 41. Theory of the development of curved barbs and their effects on feather morphology.
    Feo TJ; Simon E; Prum RO
    J Morphol; 2016 Aug; 277(8):995-1013. PubMed ID: 27185293
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Primitive wing feather arrangement in Archaeopteryx lithographica and Anchiornis huxleyi.
    Longrich NR; Vinther J; Meng Q; Li Q; Russell AP
    Curr Biol; 2012 Dec; 22(23):2262-7. PubMed ID: 23177480
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Wing resonances in the Australian field cricket Teleogryllus oceanicus.
    Bennet-Clark HC
    J Exp Biol; 2003 May; 206(Pt 9):1479-96. PubMed ID: 12654887
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A quantitative analysis of flight feather replacement in the Moustached Tree Swift Hemiprocne mystacea, a tropical aerial forager.
    Rohwer S; Wang LK
    PLoS One; 2010 Jul; 5(7):e11586. PubMed ID: 20644642
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An alternate and reversible method for flight restraint of cranes.
    Zhang SL; Yang SH; Li B; Xu YC; Ma JH; Xu JF; Zhang XG
    Zoo Biol; 2011; 30(3):342-8. PubMed ID: 21538502
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Theoretical morphology and development of flight feather vane asymmetry with experimental tests in parrots.
    Feo TJ; Prum RO
    J Exp Zool B Mol Dev Evol; 2014 Jun; 322(4):240-55. PubMed ID: 24816758
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biomechanics of the peafowl's crest reveals frequencies tuned to social displays.
    Kane SA; Van Beveren D; Dakin R
    PLoS One; 2018; 13(11):e0207247. PubMed ID: 30485316
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aerodynamic effects on an emulated hovering passerine with different wing-folding amplitudes.
    Chen WH; Yeh SI
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33836515
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Scaling trends of bird's alular feathers in connection to leading-edge vortex flow over hand-wing.
    Linehan T; Mohseni K
    Sci Rep; 2020 May; 10(1):7905. PubMed ID: 32404925
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight.
    KleinHeerenbrink M; Johansson LC; Hedenström A
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28539482
    [TBL] [Abstract][Full Text] [Related]  

  • 51. How flight feathers stick together to form a continuous morphing wing.
    Matloff LY; Chang E; Feo TJ; Jeffries L; Stowers AK; Thomson C; Lentink D
    Science; 2020 Jan; 367(6475):293-297. PubMed ID: 31949079
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The energetic cost of variations in wing span and wing asymmetry in the zebra finch Taeniopygia guttata.
    Hambly C; Harper EJ; Speakman JR
    J Exp Biol; 2004 Oct; 207(Pt 22):3977-84. PubMed ID: 15472028
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanical and structural adaptations to migration in the flight feathers of a Palaearctic passerine.
    de la Hera I; Hernández-Téllez I; Pérez-Rigueiro J; Pérez-Tris J; Rojo FJ; Tellería JL
    J Evol Biol; 2020 Jul; 33(7):979-989. PubMed ID: 32282960
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Scaling of bird wings and feathers for efficient flight.
    Sullivan TN; Meyers MA; Arzt E
    Sci Adv; 2019 Jan; 5(1):eaat4269. PubMed ID: 30746435
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biplane wing planform and flight performance of the feathered dinosaur Microraptor gui.
    Chatterjee S; Templin RJ
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1576-80. PubMed ID: 17242354
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Flexible flapping wings with self-organized microwrinkles.
    Tanaka H; Okada H; Shimasue Y; Liu H
    Bioinspir Biomim; 2015 Jun; 10(4):046005. PubMed ID: 26119657
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ontogeny of lift and drag production in ground birds.
    Heers AM; Tobalske BW; Dial KP
    J Exp Biol; 2011 Mar; 214(Pt 5):717-25. PubMed ID: 21307057
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sound radiation around a flying fly.
    Sueur J; Tuck EJ; Robert D
    J Acoust Soc Am; 2005 Jul; 118(1):530-8. PubMed ID: 16119372
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A lightweight, biological structure with tailored stiffness: The feather vane.
    Sullivan TN; Pissarenko A; Herrera SA; Kisailus D; Lubarda VA; Meyers MA
    Acta Biomater; 2016 Sep; 41():27-39. PubMed ID: 27184403
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sexual Dimorphism and Population Differences in Structural Properties of Barn Swallow (Hirundo rustica) Wing and Tail Feathers.
    Pap PL; Osváth G; Aparicio JM; Bărbos L; Matyjasiak P; Rubolini D; Saino N; Vágási CI; Vincze O; Møller AP
    PLoS One; 2015; 10(6):e0130844. PubMed ID: 26110255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.