These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 3249741)
21. D-glucose and D-gluconate transport in vesicles from Pseudomonas putida. Al-Jobore A; Moses G; Taylor NF Can J Biochem; 1980 Dec; 58(12):1397-404. PubMed ID: 7248836 [TBL] [Abstract][Full Text] [Related]
22. Biodegradation of phenol by free and immobilized cells of Pseudomonas putida. González BG; Herrera TG Acta Microbiol Pol; 1995; 44(3-4):285-296. PubMed ID: 8934668 [TBL] [Abstract][Full Text] [Related]
23. [Effects of p-nitrophenol and organophosphorous nitroaromatic insecticides on the respiratory activity of free and immobilized cells of strains S-11 and BA-11 of Pseudomonas putida]. Ignatov OV; Guliĭ OI; Singirtsev IN; Shcherbakov AA; Makarov OE; Ignatov VV Prikl Biokhim Mikrobiol; 2002; 38(3):278-85. PubMed ID: 12068580 [TBL] [Abstract][Full Text] [Related]
24. [On the decomposition of deoxy sugars by vacterial enzymes, IV. Comparative studies on the oxidation of 3-deoxy-D-galactose and D-galactose in a strain of Pseudomonas putida]. Schiwara HW; Domagk GF Hoppe Seylers Z Physiol Chem; 1968 Mar; 349(3):297-302. PubMed ID: 4387175 [No Abstract] [Full Text] [Related]
25. Catabolism of D-glucose by Pseudomonas putida U occurs via extracellular transformation into D-gluconic acid and induction of a specific gluconate transport system. Schleissner C; Reglero A; Luengo JM Microbiology (Reading); 1997 May; 143 ( Pt 5)():1595-1603. PubMed ID: 9168611 [TBL] [Abstract][Full Text] [Related]
26. Zymomonas mobilis as catalyst for the biotechnological production of sorbitol and gluconic acid. Erzinger GS; Vitolo M Appl Biochem Biotechnol; 2006 Mar; 131(1-3):787-94. PubMed ID: 18563654 [TBL] [Abstract][Full Text] [Related]
27. [Phosphate and glucose accumulation by Pseudomonas cultures in relation to their arsenic resistance]. Mynbaeva BN; Okorokov LA; Abdrashitova SA; Ilialetdinov AN Mikrobiologiia; 1984; 53(5):822-5. PubMed ID: 6439982 [TBL] [Abstract][Full Text] [Related]
28. Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency. Buch A; Archana G; Naresh Kumar G Res Microbiol; 2008; 159(9-10):635-42. PubMed ID: 18996187 [TBL] [Abstract][Full Text] [Related]
29. Zymomonas mobilis as catalyst for the biotechnological production of sorbitol and gluconic acid. Erzinger GS; Vitolo M Appl Biochem Biotechnol; 2006; 129-132():787-94. PubMed ID: 16915688 [TBL] [Abstract][Full Text] [Related]
30. Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Tay A; Yang ST Biotechnol Bioeng; 2002 Oct; 80(1):1-12. PubMed ID: 12209781 [TBL] [Abstract][Full Text] [Related]
31. Characterization of production of free gluconic acid by Gluconobacter suboxydans adsorbed on ceramic honeycomb monolith. Shiraishi F; Kawakami K; Kono S; Tamura A; Tsuruta S; Kusunoki K Biotechnol Bioeng; 1989 May; 33(11):1413-8. PubMed ID: 18587881 [TBL] [Abstract][Full Text] [Related]
32. Gluconic acid-producing bacteria from honey bees and ripening honey. Ruiz-Argüeso T; Rodriguez-Navarro A J Gen Microbiol; 1973 May; 76(1):211-6. PubMed ID: 4579122 [No Abstract] [Full Text] [Related]
33. Influence of phenol on the biodegradation of pyridine by freely suspended and immobilized Pseudomonas putida MK1. Kim MK; Singleton I; Yin CR; Quan ZX; Lee M; Lee ST Lett Appl Microbiol; 2006 May; 42(5):495-500. PubMed ID: 16620209 [TBL] [Abstract][Full Text] [Related]
34. Absence of Crabtree effect in human melanoma cells adapted to growth at low pH: reversal by respiratory inhibitors. Burd R; Wachsberger PR; Biaglow JE; Wahl ML; Lee I; Leeper DB Cancer Res; 2001 Jul; 61(14):5630-5. PubMed ID: 11454717 [TBL] [Abstract][Full Text] [Related]
35. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Prabhu Y; Phale PS Appl Microbiol Biotechnol; 2003 May; 61(4):342-51. PubMed ID: 12743764 [TBL] [Abstract][Full Text] [Related]
36. Optimisation of fermentation conditions for gluconic acid production by a mutant of Aspergillus niger. Singh OV; Sharma A; Singh RP Indian J Exp Biol; 2001 Nov; 39(11):1136-43. PubMed ID: 11906107 [TBL] [Abstract][Full Text] [Related]
37. Production of gluconic acid using Micrococcus sp.: optimisation of carbon and nitrogen sources. Joshi VD; Sreekantiah KR; Manjrekar SP Hindustan Antibiot Bull; 1996; 38(1-4):57-65. PubMed ID: 9676047 [TBL] [Abstract][Full Text] [Related]
38. [Glucose consumption and dehydrogenase activity of the cells of the arsenite-oxidizing bacterium Pseudomonas putida]. Abdrashitova SA; Abdullina GG; Ilialetdinov AN Mikrobiologiia; 1985; 54(4):679-81. PubMed ID: 4058329 [TBL] [Abstract][Full Text] [Related]
39. The effect of oxygen on chemotaxis to naphthalene by Pseudomonas putida G7. Law AM; Aitken MD Biotechnol Bioeng; 2006 Feb; 93(3):457-64. PubMed ID: 16224793 [TBL] [Abstract][Full Text] [Related]
40. Inducible uptake and metabolism of glucose by the phosphorylative pathway in Pseudomonas putida CSV86. Basu A; Phale PS FEMS Microbiol Lett; 2006 Jun; 259(2):311-6. PubMed ID: 16734795 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]