BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32497498)

  • 1. CD31 (PECAM-1) Serves as the Endothelial Cell-Specific Receptor of Clostridium perfringens β-Toxin.
    Bruggisser J; Tarek B; Wyder M; Müller P; von Ballmoos C; Witz G; Enzmann G; Deutsch U; Engelhardt B; Posthaus H
    Cell Host Microbe; 2020 Jul; 28(1):69-78.e6. PubMed ID: 32497498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platelet Endothelial Cell Adhesion Molecule 1 (CD31) Is Essential for
    Tarek B; Bruggisser J; Cattalani F; Posthaus H
    Toxins (Basel); 2021 Dec; 13(12):. PubMed ID: 34941730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelial binding of beta toxin to small intestinal mucosal endothelial cells in early stages of experimentally induced Clostridium perfringens type C enteritis in pigs.
    Schumacher VL; Martel A; Pasmans F; Van Immerseel F; Posthaus H
    Vet Pathol; 2013 Jul; 50(4):626-9. PubMed ID: 23012387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid cytopathic effects of Clostridium perfringens beta-toxin on porcine endothelial cells.
    Gurtner C; Popescu F; Wyder M; Sutter E; Zeeh F; Frey J; von Schubert C; Posthaus H
    Infect Immun; 2010 Jul; 78(7):2966-73. PubMed ID: 20404076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clostridium perfringens α-toxin specifically induces endothelial cell death by promoting ceramide-mediated apoptosis.
    Takehara M; Bandou H; Kobayashi K; Nagahama M
    Anaerobe; 2020 Oct; 65():102262. PubMed ID: 32828915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Susceptibility of primary human endothelial cells to C. perfringens beta-toxin suggesting similar pathogenesis in human and porcine necrotizing enteritis.
    Popescu F; Wyder M; Gurtner C; Frey J; Cooke RA; Greenhill AR; Posthaus H
    Vet Microbiol; 2011 Nov; 153(1-2):173-7. PubMed ID: 21411248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beta toxin is essential for the intestinal virulence of Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model.
    Sayeed S; Uzal FA; Fisher DJ; Saputo J; Vidal JE; Chen Y; Gupta P; Rood JI; McClane BA
    Mol Microbiol; 2008 Jan; 67(1):15-30. PubMed ID: 18078439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of Clostridium perfringens beta toxin variants with differing trypsin sensitivity and in vitro cytotoxicity activity.
    Theoret JR; Uzal FA; McClane BA
    Infect Immun; 2015 Apr; 83(4):1477-86. PubMed ID: 25643999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent progress in understanding the pathogenesis of Clostridium perfringens type C infections.
    Uzal FA; McClane BA
    Vet Microbiol; 2011 Nov; 153(1-2):37-43. PubMed ID: 21420802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Everything Illuminated-Clostridium perfringens β-toxin.
    Lencer WI
    Cell Host Microbe; 2020 Jul; 28(1):5-6. PubMed ID: 32645353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clostridium perfringens beta-toxin binding to vascular endothelial cells in a human case of enteritis necroticans.
    Miclard J; van Baarlen J; Wyder M; Grabscheid B; Posthaus H
    J Med Microbiol; 2009 Jun; 58(Pt 6):826-828. PubMed ID: 19429761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Native or Proteolytically Activated NanI Sialidase Enhances the Binding and Cytotoxic Activity of Clostridium perfringens Enterotoxin and Beta Toxin.
    Theoret JR; Li J; Navarro MA; Garcia JP; Uzal FA; McClane BA
    Infect Immun; 2018 Jan; 86(1):. PubMed ID: 29038129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease.
    Uzal FA; Freedman JC; Shrestha A; Theoret JR; Garcia J; Awad MM; Adams V; Moore RJ; Rood JI; McClane BA
    Future Microbiol; 2014; 9(3):361-77. PubMed ID: 24762309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of intestinal epithelial cell damage by Clostridiumperfringens.
    Ou L; Ye B; Sun M; Qi N; Li J; Lv M; Lin X; Cai H; Hu J; Song Y; Chen X; Zhu Y; Yin L; Zhang J; Liao S; Zhang H
    Anaerobe; 2024 Jun; 87():102856. PubMed ID: 38609034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clostridium perfringens beta-toxin induces necrostatin-inhibitable, calpain-dependent necrosis in primary porcine endothelial cells.
    Autheman D; Wyder M; Popoff M; D'Herde K; Christen S; Posthaus H
    PLoS One; 2013; 8(5):e64644. PubMed ID: 23734212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Necrotic enteritis in broilers: an updated review on the pathogenesis.
    Timbermont L; Haesebrouck F; Ducatelle R; Van Immerseel F
    Avian Pathol; 2011 Aug; 40(4):341-7. PubMed ID: 21812711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freezing or adding trypsin inhibitor to equine intestinal contents extends the lifespan of Clostridium perfringens beta toxin for diagnostic purposes.
    Macias Rioseco M; Beingesser J; Uzal FA
    Anaerobe; 2012 Jun; 18(3):357-60. PubMed ID: 22516562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unveiling the pathogenic mechanisms of
    Camargo A; Ramírez JD; Kiu R; Hall LJ; Muñoz M
    Emerg Microbes Infect; 2024 Dec; 13(1):2341968. PubMed ID: 38590276
    [No Abstract]   [Full Text] [Related]  

  • 19. Evidence That VirS Is a Receptor for the Signaling Peptide of the Clostridium perfringens Agr-like Quorum Sensing System.
    Li J; McClane BA
    mBio; 2020 Sep; 11(5):. PubMed ID: 32934089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation and characterization of recombinant bivalent fusion protein r-Cpib for immunotherapy against Clostridium perfringens beta and iota toxemia.
    Das S; Majumder S; Kingston JJ; Batra HV
    Mol Immunol; 2016 Feb; 70():140-8. PubMed ID: 26774054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.