These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32498047)

  • 21. Bose Polarons in the Strongly Interacting Regime.
    Hu MG; Van de Graaff MJ; Kedar D; Corson JP; Cornell EA; Jin DS
    Phys Rev Lett; 2016 Jul; 117(5):055301. PubMed ID: 27517776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exact analysis and elastic interaction of multi-soliton for a two-dimensional Gross-Pitaevskii equation in the Bose-Einstein condensation.
    Wang H; Zhou Q; Liu W
    J Adv Res; 2022 May; 38():179-190. PubMed ID: 35572394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Approximate mean-field equations of motion for quasi-two-dimensional Bose-Einstein-condensate systems.
    Edwards M; Krygier M; Seddiqi H; Benton B; Clark CW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056710. PubMed ID: 23214909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Collective dynamics of a spin-orbit-coupled Bose-Einstein condensate.
    Hu FQ; Wang JJ; Yu ZF; Zhang AX; Xue JK
    Phys Rev E; 2016 Feb; 93(2):022214. PubMed ID: 26986338
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamical self-trapping of two-dimensional binary solitons in cross-combined linear and nonlinear optical lattices.
    Ismailov KK; Sekh GA; Salerno M
    Phys Rev E; 2023 Nov; 108(5-1):054218. PubMed ID: 38115425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Observation of Attractive and Repulsive Polarons in a Bose-Einstein Condensate.
    Jørgensen NB; Wacker L; Skalmstang KT; Parish MM; Levinsen J; Christensen RS; Bruun GM; Arlt JJ
    Phys Rev Lett; 2016 Jul; 117(5):055302. PubMed ID: 27517777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Many-body and temperature effects in two-dimensional quantum droplets in Bose-Bose mixtures.
    Boudjemâa A
    Sci Rep; 2021 Nov; 11(1):21765. PubMed ID: 34741072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bragg spectroscopy of the multibranch Bogoliubov spectrum of elongated Bose-Einstein condensates.
    Steinhauer J; Katz N; Ozeri R; Davidson N; Tozzo C; Dalfovo F
    Phys Rev Lett; 2003 Feb; 90(6):060404. PubMed ID: 12633281
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The application of the "inverse problem" method for constructing confining potentials that make N-soliton waveforms exact solutions in the Gross-Pitaevskii equation.
    Cooper F; Khare A; Dawson JF; Charalampidis EG; Saxena A
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38619249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High sensitivity phonon spectroscopy of Bose-Einstein condensates using matter-wave interference.
    Katz N; Ozeri R; Steinhauer J; Davidson N; Tozzo C; Dalfovo F
    Phys Rev Lett; 2004 Nov; 93(22):220403. PubMed ID: 15601071
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solvable Model of a Generic Driven Mixture of Trapped Bose-Einstein Condensates and Properties of a Many-Boson Floquet State at the Limit of an Infinite Number of Particles.
    Alon OE
    Entropy (Basel); 2020 Nov; 22(12):. PubMed ID: 33266526
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uniform-density Bose-Einstein condensates of the Gross-Pitaevskii equation found by solving the inverse problem for the confining potential.
    Cooper F; Khare A; Dawson JF; Charalampidis EG; Saxena A
    Phys Rev E; 2023 Jun; 107(6-1):064202. PubMed ID: 37464684
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polaron Interactions and Bipolarons in One-Dimensional Bose Gases in the Strong Coupling Regime.
    Will M; Astrakharchik GE; Fleischhauer M
    Phys Rev Lett; 2021 Sep; 127(10):103401. PubMed ID: 34533353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quasi-polaritons in Bose-Einstein condensates induced by Casimir-Polder interaction with graphene.
    Terças H; Ribeiro S; Mendonça JT
    J Phys Condens Matter; 2015 Jun; 27(21):214011. PubMed ID: 25966318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phase separation and pattern formation in a binary Bose-Einstein condensate.
    Sabbatini J; Zurek WH; Davis MJ
    Phys Rev Lett; 2011 Dec; 107(23):230402. PubMed ID: 22182069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exact soliton-on-plane-wave solutions for two-component Bose-Einstein condensates.
    Li L; Malomed BA; Mihalache D; Liu WM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066610. PubMed ID: 16907000
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compacton existence and spin-orbit density dependence in Bose-Einstein condensates.
    Abdullaev FK; Hadi MSA; Umarov B; Taib LA; Salerno M
    Phys Rev E; 2023 Apr; 107(4-1):044218. PubMed ID: 37198780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamical stability of dipolar Bose-Einstein condensates with temporal modulation of the s-wave scattering length.
    Sabari S; Jisha CP; Porsezian K; Brazhnyi VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032905. PubMed ID: 26465538
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effective potentials in a rotating spin-orbit-coupled spin-1 spinor condensate.
    Banger P; Kumar RK; Roy A; Gautam S
    J Phys Condens Matter; 2022 Dec; 35(4):. PubMed ID: 36541536
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Condensates of p-wave pairs are exact solutions for rotating two-component Bose gases.
    Papenbrock T; Reimann SM; Kavoulakis GM
    Phys Rev Lett; 2012 Feb; 108(7):075304. PubMed ID: 22401222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.