BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32498235)

  • 1. Effect of Thidiazuron on Terpene Volatile Constituents and Terpenoid Biosynthesis Pathway Gene Expression of Shine Muscat (
    Wang W; Khalil-Ur-Rehman M; Wei LL; Nieuwenhuizen NJ; Zheng H; Tao JM
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32498235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomics Integrated with Free and Bound Terpenoid Aroma Profiling during "Shine Muscat" (
    Wang W; Feng J; Wei L; Khalil-Ur-Rehman M; Nieuwenhuizen NJ; Yang L; Zheng H; Tao J
    J Agric Food Chem; 2021 Feb; 69(4):1413-1429. PubMed ID: 33481572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-seq based transcriptomic analysis of CPPU treated grape berries and emission of volatile compounds.
    Wang W; Khalil-Ur-Rehman M; Feng J; Tao J
    J Plant Physiol; 2017 Nov; 218():155-166. PubMed ID: 28843071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of methyl jasmonate on the aroma of Sangiovese grapes and wines.
    D'Onofrio C; Matarese F; Cuzzola A
    Food Chem; 2018 Mar; 242():352-361. PubMed ID: 29037700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic architecture of berry aroma compounds in a QTL (quantitative trait loci) mapping population of interspecific hybrid grapes (Vitis labruscana × Vitis vinifera).
    Koyama K; Kono A; Ban Y; Bahena-Garrido SM; Ohama T; Iwashita K; Fukuda H; Goto-Yamamoto N
    BMC Plant Biol; 2022 Sep; 22(1):458. PubMed ID: 36151514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of methyl jasmonate on the monoterpenes of Muscat Hamburg grapes and wine.
    Yue X; Shi P; Tang Y; Zhang H; Ma X; Ju Y; Zhang Z
    J Sci Food Agric; 2021 Jul; 101(9):3665-3675. PubMed ID: 33280112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Constitutive and Induced Biosynthesis of Mono- and Sesquiterpenes in Grapes (Vitis vinifera): A Key to Unlocking the Biochemical Secrets of Unique Grape Aroma Profiles.
    Schwab W; Wüst M
    J Agric Food Chem; 2015 Dec; 63(49):10591-603. PubMed ID: 26592256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression.
    Sweetman C; Wong DC; Ford CM; Drew DP
    BMC Genomics; 2012 Dec; 13():691. PubMed ID: 23227855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated transcriptomic and metabolomic analysis reveals the changes in monoterpene compounds during the development of Muscat Hamburg (Vitis vinifera L.) grape berries.
    Yue X; Ju Y; Zhang H; Wang Z; Xu H; Zhang Z
    Food Res Int; 2022 Dec; 162(Pt B):112065. PubMed ID: 36461322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of volatile compound metabolome and transcriptome in grape berries exposed to sunlight under dry-hot climate.
    He L; Xu XQ; Wang Y; Chen WK; Sun RZ; Cheng G; Liu B; Chen W; Duan CQ; Wang J; Pan QH
    BMC Plant Biol; 2020 Feb; 20(1):59. PubMed ID: 32019505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of volatile compounds during the development of Muscat grape 'Shine Muscat' (Vitis labrusca × V. vinifera).
    Wu Y; Zhang W; Song S; Xu W; Zhang C; Ma C; Wang L; Wang S
    Food Chem; 2020 Mar; 309():125778. PubMed ID: 31704071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Transcriptomic Analysis of Grape Berry in Response to Root Restriction during Developmental Stages.
    Leng F; Lin Q; Wu D; Wang S; Wang D; Sun C
    Molecules; 2016 Oct; 21(11):. PubMed ID: 27801843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sunlight exclusion from Muscat grape alters volatile profiles during berry development.
    Zhang H; Fan P; Liu C; Wu B; Li S; Liang Z
    Food Chem; 2014 Dec; 164():242-50. PubMed ID: 24996330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VviWRKY40, a WRKY Transcription Factor, Regulates Glycosylated Monoterpenoid Production by
    Li X; He L; An X; Yu K; Meng N; Duan CQ; Pan QH
    Genes (Basel); 2020 Apr; 11(5):. PubMed ID: 32365554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the chemosensory basis of flavor in table grapes.
    Maoz I; Kaplunov T; Raban E; Dynkin I; Degani O; Lewinsohn E; Lichter A
    J Sci Food Agric; 2020 Mar; 100(4):1405-1417. PubMed ID: 31646647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive study of volatile compounds and transcriptome data providing genes for grape aroma.
    Li Y; He L; Song Y; Zhang P; Chen D; Guan L; Liu S
    BMC Plant Biol; 2023 Mar; 23(1):171. PubMed ID: 37003985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concealed ester formation and amino acid metabolism to volatile compounds in table grape (Vitis vinifera L.) berries.
    Maoz I; Rikanati RD; Schlesinger D; Bar E; Gonda I; Levin E; Kaplunov T; Sela N; Lichter A; Lewinsohn E
    Plant Sci; 2018 Sep; 274():223-230. PubMed ID: 30080607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of cluster thinning and girdling on aroma composition in 'Jumeigui' table grape.
    Xi X; Zha Q; He Y; Tian Y; Jiang A
    Sci Rep; 2020 Apr; 10(1):6877. PubMed ID: 32327696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of wine aroma: transcript profiles of hydroxymethylbutenyl diphosphate reductase, geranyl diphosphate synthase, and linalool/nerolidol synthase parallel monoterpenol glycoside accumulation in Gewürztraminer grapes.
    Martin DM; Chiang A; Lund ST; Bohlmann J
    Planta; 2012 Sep; 236(3):919-29. PubMed ID: 22824963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue-specific mRNA expression profiling in grape berry tissues.
    Grimplet J; Deluc LG; Tillett RL; Wheatley MD; Schlauch KA; Cramer GR; Cushman JC
    BMC Genomics; 2007 Jun; 8():187. PubMed ID: 17584945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.