These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 32498313)

  • 41. A novel structure for tunable terahertz absorber based on graphene.
    Xu BZ; Gu CQ; Li Z; Niu ZY
    Opt Express; 2013 Oct; 21(20):23803-11. PubMed ID: 24104291
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Realization of a multi-band terahertz metamaterial absorber using two identical split rings having opposite opening directions connected by a rectangular patch.
    Wang BX; Xu W; Wu Y; Yang Z; Lai S; Lu L
    Nanoscale Adv; 2022 Mar; 4(5):1359-1367. PubMed ID: 36133689
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces.
    Mou N; Sun S; Dong H; Dong S; He Q; Zhou L; Zhang L
    Opt Express; 2018 Apr; 26(9):11728-11736. PubMed ID: 29716091
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Broadband tunable terahertz absorber based on vanadium dioxide metamaterials.
    Song Z; Wang K; Li J; Liu QH
    Opt Express; 2018 Mar; 26(6):7148-7154. PubMed ID: 29609401
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Near-infrared absorbers based on the heterostructures of two-dimensional materials.
    Davoodi F; Granpayeh N
    Appl Opt; 2018 Feb; 57(6):1358-1366. PubMed ID: 29469834
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wafer-scale ultra-broadband perfect absorber based on ultrathin Al-SiO
    Li H; Zhang C; Liu XC; Yu P; Chen WD; Xie ZW; Tang MJ; Zheng J; Li L
    Opt Express; 2022 Aug; 30(17):30911-30917. PubMed ID: 36242186
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Broadband Tunable THz Absorption with Singular Graphene Metasurfaces.
    Galiffi E; Pendry JB; Huidobro PA
    ACS Nano; 2018 Feb; 12(2):1006-1013. PubMed ID: 29323475
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analytical method for designing tunable terahertz absorbers with the desired frequency and bandwidth.
    Liu Z; Guo L; Zhang Q
    Opt Express; 2021 Nov; 29(24):39777-39787. PubMed ID: 34809334
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach.
    Andryieuski A; Lavrinenko AV
    Opt Express; 2013 Apr; 21(7):9144-55. PubMed ID: 23572003
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene.
    Huang ML; Cheng YZ; Cheng ZZ; Chen HR; Mao XS; Gong RZ
    Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29614736
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Switchable broadband metamaterial absorber/reflector based on vanadium dioxide rings.
    Cao B; Li Y; Liu X; Fei H; Zhang M; Yang Y
    Appl Opt; 2020 Sep; 59(27):8111-8117. PubMed ID: 32976389
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A tunable THz absorber consisting of an elliptical graphene disk array.
    Su Z; Wang Y; Luo X; Luo H; Zhang C; Li M; Sang T; Yang G
    Phys Chem Chem Phys; 2018 May; 20(21):14357-14361. PubMed ID: 29766159
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure.
    Yang J; Zhu Z; Zhang J; Guo C; Xu W; Liu K; Yuan X; Qin S
    Sci Rep; 2018 Feb; 8(1):3239. PubMed ID: 29459711
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Broadband perfect optical absorption enabled by quasi-bound states in the continuum in graphene non-concentric rings.
    Xu K; Huang J; Wang W
    Phys Chem Chem Phys; 2022 Dec; 25(1):604-611. PubMed ID: 36484335
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers.
    Butun S; Aydin K
    Opt Express; 2014 Aug; 22(16):19457-68. PubMed ID: 25321029
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design of broadband graphene-metamaterial absorbers for permittivity sensing at mid-infrared regions.
    Huang H; Xia H; Xie W; Guo Z; Li H; Xie D
    Sci Rep; 2018 Mar; 8(1):4183. PubMed ID: 29520032
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Broadband dynamically tunable terahertz absorber based on a Dirac semimetal.
    Xiong H; Shen Q; Ji Q
    Appl Opt; 2020 Jun; 59(16):4970-4976. PubMed ID: 32543494
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Designed Broadband Absorber Based on ENZ Mode Incorporating Plasmonic Metasurfaces.
    Dang PT; Le KQ; Lee JH; Nguyen TK
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31590301
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region.
    Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H
    Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Tunable Terahertz Metamaterial Absorber Composed of Hourglass-Shaped Graphene Arrays.
    Qi Y; Zhang Y; Liu C; Zhang T; Zhang B; Wang L; Deng X; Wang X; Yu Y
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32192053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.