These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 32498360)

  • 61. Electrochemical Nitric Oxide Sensors: Principles of Design and Characterization.
    Brown MD; Schoenfisch MH
    Chem Rev; 2019 Nov; 119(22):11551-11575. PubMed ID: 31553169
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Biocompatibility of electrochemical glucose sensors implanted in the subcutis of pigs.
    Kvist PH; Iburg T; Bielecki M; Gerstenberg M; Buch-Rasmussen T; Hasselager E; Jensen HE
    Diabetes Technol Ther; 2006 Aug; 8(4):463-75. PubMed ID: 16939371
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Electrochemical glucose sensors in diabetes management: an updated review (2010-2020).
    Teymourian H; Barfidokht A; Wang J
    Chem Soc Rev; 2020 Nov; 49(21):7671-7709. PubMed ID: 33020790
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Modeling the Physiological Factors Affecting Glucose Sensor Function in Vivo.
    Novak MT; Reichert WM
    J Diabetes Sci Technol; 2015 Jun; 9(5):993-8. PubMed ID: 26134832
    [TBL] [Abstract][Full Text] [Related]  

  • 65. What Is Left for Real-Life Lactate Monitoring? Current Advances in Electrochemical Lactate (Bio)Sensors for Agrifood and Biomedical Applications.
    García-Guzmán JJ; Sierra-Padilla A; Palacios-Santander JM; Fernández-Alba JJ; Macías CG; Cubillana-Aguilera L
    Biosensors (Basel); 2022 Oct; 12(11):. PubMed ID: 36354428
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Lactate biosensors for continuous monitoring.
    Mo JW; Smart W
    Front Biosci; 2004 Sep; 9():3384-91. PubMed ID: 15353365
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Novel CeO2-CuO-decorated enzymatic lactate biosensors operating in low oxygen environments.
    Uzunoglu A; Stanciu LA
    Anal Chim Acta; 2016 Feb; 909():121-8. PubMed ID: 26851092
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Alkanethiol Monolayer End Groups Affect the Long-Term Operational Stability and Signaling of Electrochemical, Aptamer-Based Sensors in Biological Fluids.
    Shaver A; Curtis SD; Arroyo-Currás N
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):11214-11223. PubMed ID: 32040915
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Local release of masitinib alters in vivo implantable continuous glucose sensor performance.
    Avula M; Jones D; Rao AN; McClain D; McGill LD; Grainger DW; Solzbacher F
    Biosens Bioelectron; 2016 Mar; 77():149-56. PubMed ID: 26402593
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Thin-film amperometric multibiosensor for simultaneous determination of lactate and glucose in wine.
    Shkotova LV; Piechniakova NY; Kukla OL; Dzyadevych SV
    Food Chem; 2016 Apr; 197(Pt A):972-8. PubMed ID: 26617042
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform.
    Teymourian H; Salimi A; Khezrian S
    Biosens Bioelectron; 2013 Nov; 49():1-8. PubMed ID: 23708810
    [TBL] [Abstract][Full Text] [Related]  

  • 72. In vivo validation of a miniaturized electrochemical oxygen sensor for measuring intestinal oxygen tension.
    Gray ME; Marland JRK; Dunare C; Blair EO; Meehan J; Tsiamis A; Kunkler IH; Murray AF; Argyle D; Dyson A; Singer M; Potter MA
    Am J Physiol Gastrointest Liver Physiol; 2019 Aug; 317(2):G242-G252. PubMed ID: 31188641
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A subcutaneous glucose sensor with improved longevity, dynamic range, and stability of calibration.
    Updike SJ; Shults MC; Gilligan BJ; Rhodes RK
    Diabetes Care; 2000 Feb; 23(2):208-14. PubMed ID: 10868833
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Developing glucose sensors for in vivo use.
    Pickup J
    Trends Biotechnol; 1993 Jul; 11(7):285-91. PubMed ID: 7763951
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Recent developments in nanostructure based electrochemical glucose sensors.
    Zaidi SA; Shin JH
    Talanta; 2016; 149():30-42. PubMed ID: 26717811
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Recent advances in electrochemical non-enzymatic glucose sensors - A review.
    Hwang DW; Lee S; Seo M; Chung TD
    Anal Chim Acta; 2018 Nov; 1033():1-34. PubMed ID: 30172314
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds.
    Adhikari BR; Govindhan M; Chen A
    Sensors (Basel); 2015 Sep; 15(9):22490-508. PubMed ID: 26404304
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Top-Down Strategy of Implantable Biosensor Using Adaptable, Porous Hollow Fibrous Membrane.
    Zhou J; Ma Z; Hong X; Wu HM; Ma SY; Li Y; Chen DJ; Yu HY; Huang XJ
    ACS Sens; 2019 Apr; 4(4):931-937. PubMed ID: 30950605
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Electrochemical biosensors.
    Ronkainen NJ; Halsall HB; Heineman WR
    Chem Soc Rev; 2010 May; 39(5):1747-63. PubMed ID: 20419217
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Affinity-based turbidity sensor for glucose monitoring by optical coherence tomography: toward the development of an implantable sensor.
    Ballerstadt R; Kholodnykh A; Evans C; Boretsky A; Motamedi M; Gowda A; McNichols R
    Anal Chem; 2007 Sep; 79(18):6965-74. PubMed ID: 17702528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.