These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 32498663)
1. Effects of fulvic acid on the photosynthetic and physiological characteristics of Fang Z; Wang X; Zhang X; Zhao D; Tao J Plant Signal Behav; 2020 Jul; 15(7):1774714. PubMed ID: 32498663 [TBL] [Abstract][Full Text] [Related]
2. Graphene Oxide as an Effective Soil Water Retention Agent Can Confer Drought Stress Tolerance to Zhao D; Fang Z; Tang Y; Tao J Environ Sci Technol; 2020 Jul; 54(13):8269-8279. PubMed ID: 32545957 [TBL] [Abstract][Full Text] [Related]
3. Functional Characterization of the Luan Y; An H; Chen Z; Zhao D; Tao J Plants (Basel); 2024 Aug; 13(15):. PubMed ID: 39124262 [TBL] [Abstract][Full Text] [Related]
4. [Effects of fulvic acid on photosynthetic characteristics, yield and quality of cucumber under drought stress]. Liu CJ; Lyu CY; Ai XZ; Bi HG Ying Yong Sheng Tai Xue Bao; 2022 May; 33(5):1300-1310. PubMed ID: 35730089 [TBL] [Abstract][Full Text] [Related]
5. A Paeonia ostii caffeoyl-CoA O-methyltransferase confers drought stress tolerance by promoting lignin synthesis and ROS scavenging. Zhao D; Luan Y; Shi W; Zhang X; Meng J; Tao J Plant Sci; 2021 Feb; 303():110765. PubMed ID: 33487350 [TBL] [Abstract][Full Text] [Related]
6. Regulation of ROS through proficient modulations of antioxidative defense system maintains the structural and functional integrity of photosynthetic apparatus and confers drought tolerance in the facultative halophyte Salvadora persica L. Rangani J; Panda A; Patel M; Parida AK J Photochem Photobiol B; 2018 Dec; 189():214-233. PubMed ID: 30396132 [TBL] [Abstract][Full Text] [Related]
7. PoWRKY69-PoVQ11 module positively regulates drought tolerance by accumulating fructose in Paeonia ostii. Luan Y; Chen Z; Fang Z; Meng J; Tao J; Zhao D Plant J; 2024 Aug; 119(4):1782-1799. PubMed ID: 38975960 [TBL] [Abstract][Full Text] [Related]
8. Effects of High Temperature Stress on the Physiological and Biochemical Characteristics of Hong E; Xia X; Ji W; Li T; Xu X; Chen J; Chen X; Zhu X Int J Mol Sci; 2023 Jul; 24(13):. PubMed ID: 37446356 [TBL] [Abstract][Full Text] [Related]
9. Mitigation of drought stress in chili plants (Capsicum annuum L.) using mango fruit waste biochar, fulvic acid and cobalt. Hareem M; Danish S; Obaid SA; Ansari MJ; Datta R Sci Rep; 2024 Jun; 14(1):14270. PubMed ID: 38902414 [TBL] [Abstract][Full Text] [Related]
10. Exogenous trehalose confers high temperature stress tolerance to herbaceous peony by enhancing antioxidant systems, activating photosynthesis, and protecting cell structure. Zhao DQ; Li TT; Hao ZJ; Cheng ML; Tao J Cell Stress Chaperones; 2019 Jan; 24(1):247-257. PubMed ID: 30632065 [TBL] [Abstract][Full Text] [Related]
11. Coronatine enhances drought tolerance via improving antioxidative capacity to maintaining higher photosynthetic performance in soybean. Hao L; Wang Y; Zhang J; Xie Y; Zhang M; Duan L; Li Z Plant Sci; 2013 Sep; 210():1-9. PubMed ID: 23849108 [TBL] [Abstract][Full Text] [Related]
12. Differential modulation of photosynthesis, ROS and antioxidant enzyme activities in stress-sensitive and -tolerant rice cultivars during salinity and drought upon restriction of COX and AOX pathways of mitochondrial oxidative electron transport. Challabathula D; Analin B; Mohanan A; Bakka K J Plant Physiol; 2022 Jan; 268():153583. PubMed ID: 34871988 [TBL] [Abstract][Full Text] [Related]
13. Effects of drought stress on physiological responses and gene expression changes in herbaceous peony ( Li T; Wang R; Zhao D; Tao J Plant Signal Behav; 2020 May; 15(5):1746034. PubMed ID: 32264754 [TBL] [Abstract][Full Text] [Related]
14. Elevated CO Li B; Feng Y; Zong Y; Zhang D; Hao X; Li P Plant Physiol Biochem; 2020 Sep; 154():105-114. PubMed ID: 32535322 [TBL] [Abstract][Full Text] [Related]
15. Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.). Wang Y; Yang R; Zheng J; Shen Z; Xu X Ecotoxicol Environ Saf; 2019 Jan; 167():10-19. PubMed ID: 30292971 [TBL] [Abstract][Full Text] [Related]
16. Interdependence of plant water status with photosynthetic performance and root defense responses in Vigna radiata (L.) Wilczek under progressive drought stress and recovery. Sengupta D; Guha A; Reddy AR J Photochem Photobiol B; 2013 Oct; 127():170-81. PubMed ID: 24050991 [TBL] [Abstract][Full Text] [Related]
17. PoWRKY71 is involved in Luan Y; Chen Z; Fang Z; Huang X; Zhao D; Tao J Hortic Res; 2023 Nov; 10(11):uhad194. PubMed ID: 38023485 [TBL] [Abstract][Full Text] [Related]
18. Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Batool T; Ali S; Seleiman MF; Naveed NH; Ali A; Ahmed K; Abid M; Rizwan M; Shahid MR; Alotaibi M; Al-Ashkar I; Mubushar M Sci Rep; 2020 Oct; 10(1):16975. PubMed ID: 33046721 [TBL] [Abstract][Full Text] [Related]
19. Grafting improves tomato drought tolerance through enhancing photosynthetic capacity and reducing ROS accumulation. Zhang Z; Cao B; Gao S; Xu K Protoplasma; 2019 Jul; 256(4):1013-1024. PubMed ID: 30805718 [TBL] [Abstract][Full Text] [Related]
20. The effect of calcium chloride on growth, photosynthesis, and antioxidant responses of Zoysia japonica under drought conditions. Xu C; Li X; Zhang L PLoS One; 2013; 8(7):e68214. PubMed ID: 23844172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]