These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 32498839)
1. Visualization of endogenous β-galactosidase activity in living cells and zebrafish with a turn-on near-infrared fluorescent probe. Pang X; Li Y; Zhou Z; Lu Q; Xie R; Wu C; Zhang Y; Li H Talanta; 2020 Sep; 217():121098. PubMed ID: 32498839 [TBL] [Abstract][Full Text] [Related]
2. A near-infrared fluorescent probe for monitoring and imaging of β-galactosidase in living cells. Wu C; Ni Z; Li P; Li Y; Pang X; Xie R; Zhou Z; Li H; Zhang Y Talanta; 2020 Nov; 219():121307. PubMed ID: 32887048 [TBL] [Abstract][Full Text] [Related]
3. A new near-infrared excitation/emission fluorescent probe for the detection of β-galactosidase in living cells and in vivo. Li Y; Liu F; Zhu D; Zhu T; Zhang Y; Li Y; Luo J; Kong L Talanta; 2022 Jan; 237():122952. PubMed ID: 34736678 [TBL] [Abstract][Full Text] [Related]
4. Real-Time Tracking and In Vivo Visualization of β-Galactosidase Activity in Colorectal Tumor with a Ratiometric Near-Infrared Fluorescent Probe. Gu K; Xu Y; Li H; Guo Z; Zhu S; Zhu S; Shi P; James TD; Tian H; Zhu WH J Am Chem Soc; 2016 Apr; 138(16):5334-40. PubMed ID: 27054782 [TBL] [Abstract][Full Text] [Related]
5. A sensitive fluorescent probe for β-galactosidase activity detection and application in ovarian tumor imaging. Fan F; Zhang L; Zhou X; Mu F; Shi G J Mater Chem B; 2021 Jan; 9(1):170-175. PubMed ID: 33230516 [TBL] [Abstract][Full Text] [Related]
6. A near-infrared fluorescent probe for the ratiometric detection and living cell imaging of β-galactosidase. Zhang X; Chen X; Zhang Y; Liu K; Shen H; Zheng E; Huang X; Hou S; Ma X Anal Bioanal Chem; 2019 Dec; 411(30):7957-7966. PubMed ID: 31732786 [TBL] [Abstract][Full Text] [Related]
7. Specific Near-Infrared Probe for Ultrafast Imaging of Lysosomal β-Galactosidase in Ovarian Cancer Cells. Li X; Pan Y; Chen H; Duan Y; Zhou S; Wu W; Wang S; Liu B Anal Chem; 2020 Apr; 92(8):5772-5779. PubMed ID: 32212603 [TBL] [Abstract][Full Text] [Related]
8. Near-infrared fluorescent probe with a large Stokes shift for bioimaging of β-galactosidase in living cells and zebrafish develop at different period. Chen S; Niu K; Wang L; Wu Y; Hou S; Ma X Anal Chim Acta; 2022 Nov; 1232():340459. PubMed ID: 36257743 [TBL] [Abstract][Full Text] [Related]
9. A novel NIR fluorescent probe for enhanced β-galactosidase detection and tumor imaging in ovarian cancer models. Luo W; Diao Q; Lv L; Li T; Ma P; Song D Spectrochim Acta A Mol Biomol Spectrosc; 2024 Sep; 317():124411. PubMed ID: 38728851 [TBL] [Abstract][Full Text] [Related]
10. A near-infrared excitation/emission fluorescent probe for imaging of endogenous cysteine in living cells and zebrafish. Xie R; Li Y; Zhou Z; Pang X; Wu C; Yin P; Li H Anal Bioanal Chem; 2020 Sep; 412(23):5539-5550. PubMed ID: 32681222 [TBL] [Abstract][Full Text] [Related]
11. In vivo ratiometric tracking of endogenous β-galactosidase activity using an activatable near-infrared fluorescent probe. Shi L; Yan C; Ma Y; Wang T; Guo Z; Zhu WH Chem Commun (Camb); 2019 Oct; 55(82):12308-12311. PubMed ID: 31556426 [TBL] [Abstract][Full Text] [Related]
12. Imaging of ovarian cancers using enzyme activatable probes with second near-infrared window emission. Chen JA; Pan H; Wang Z; Gao J; Tan J; Ouyang Z; Guo W; Gu X Chem Commun (Camb); 2020 Mar; 56(18):2731-2734. PubMed ID: 32022000 [TBL] [Abstract][Full Text] [Related]
13. Activatable Formation of Emissive Excimers for Highly Selective Detection of β-Galactosidase. Li Y; Ning L; Yuan F; Zhang T; Zhang J; Xu Z; Yang XF Anal Chem; 2020 Apr; 92(8):5733-5740. PubMed ID: 32193934 [TBL] [Abstract][Full Text] [Related]
14. A selective and light-up fluorescent probe for β-galactosidase activity detection and imaging in living cells based on an AIE tetraphenylethylene derivative. Jiang G; Zeng G; Zhu W; Li Y; Dong X; Zhang G; Fan X; Wang J; Wu Y; Tang BZ Chem Commun (Camb); 2017 Apr; 53(32):4505-4508. PubMed ID: 28383580 [TBL] [Abstract][Full Text] [Related]
15. Rational design of near-infrared ratiometric fluorescent probes for real-time tracking of β-galactosidase in vivo. Chen S; Liu M; Zi Y; He J; Wang L; Wu Y; Hou S; Wu W Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121879. PubMed ID: 36122464 [TBL] [Abstract][Full Text] [Related]
16. A turn-on near-infrared fluorescent probe for visualization of endogenous alkaline phosphatase activity in living cells and zebrafish. Pang X; Li Y; Lu Q; Ni Z; Zhou Z; Xie R; Wu C; Li H; Zhang Y Analyst; 2021 Jan; 146(2):521-528. PubMed ID: 33227102 [TBL] [Abstract][Full Text] [Related]
17. Visualize intracellular β-galactosidase using an asymmetric near-infrared fluorescent probe with a large Stokes shift. Chen S; Ma X; Wang H; Wang L; Wu Y; Wang Y; Li Y; Fan W; Niu C; Hou S Anal Chim Acta; 2023 Sep; 1272():341482. PubMed ID: 37355329 [TBL] [Abstract][Full Text] [Related]
18. Ratiometric fluorescent probes with a self-immolative spacer for real-time detection of β-galactosidase and imaging in living cells. Chen X; Ma X; Zhang Y; Gao G; Liu J; Zhang X; Wang M; Hou S Anal Chim Acta; 2018 Nov; 1033():193-198. PubMed ID: 30172326 [TBL] [Abstract][Full Text] [Related]
19. A near-infrared fluorescent probe with a substantial Stokes shift designed for the detection and imaging of β-galactosidase within living cells and animals. Lo YP; Nivetha N; Velmathi S; Wu SP Methods; 2024 Feb; 222():10-18. PubMed ID: 38154527 [TBL] [Abstract][Full Text] [Related]
20. NIR-excited imaging and in vivo visualization of β-galactosidase activity using a pyranonitrile-modified upconversion nanoprobe. Jiang D; Tan Q; Shen Y; Ye M; Li J; Zhou Y Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 292():122411. PubMed ID: 36731306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]