These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 32498846)
1. A new electroanalytical methodology for the determination of formaldehyde in wood-based products. Dvořák P; Ramos RM; Vyskočil V; Rodrigues JA Talanta; 2020 Sep; 217():121068. PubMed ID: 32498846 [TBL] [Abstract][Full Text] [Related]
2. Indirect determination of formaldehyde by square-wave voltammetry based on the electrochemical oxidation of 3,5-diacetyl-1,4-dihydrolutidine using an unmodified glassy-carbon electrode. Pinto GF; Rocha DP; Richter EM; Muñoz RAA; Silva SG Talanta; 2019 Jun; 198():237-241. PubMed ID: 30876556 [TBL] [Abstract][Full Text] [Related]
3. A novel mass spectrometric method for formaldehyde in children's personal-care products and water via derivatization with acetylacetone. Backe WJ Rapid Commun Mass Spectrom; 2017 Jun; 31(12):1047-1056. PubMed ID: 28386963 [TBL] [Abstract][Full Text] [Related]
4. Gas-diffusion microextraction coupled with spectrophotometry for the determination of formaldehyde in cork agglomerates. Brandão PF; Ramos RM; Valente IM; Almeida PJ; Carro AM; Lorenzo RA; Rodrigues JA Anal Bioanal Chem; 2017 Apr; 409(11):2885-2892. PubMed ID: 28190107 [TBL] [Abstract][Full Text] [Related]
5. A rapid method to detect and estimate the activity of the enzyme, alcohol oxidase by the use of two chemical complexes - acetylacetone (3,5-diacetyl-1,4-dihydrolutidine) and acetylacetanilide (3,5-di-N-phenylacetyl-1,4-dihydrolutidine). Venkatesagowda B; Dekker RFH J Microbiol Methods; 2019 Mar; 158():71-79. PubMed ID: 30716345 [TBL] [Abstract][Full Text] [Related]
6. Direct electrochemistry and bioelectrocatalysis of a class II non-symbiotic plant haemoglobin immobilised on screen-printed carbon electrodes. Chekin F; Leiva N; Raoof JB; Gorton L; Bülow L Anal Bioanal Chem; 2010 Oct; 398(4):1643-9. PubMed ID: 20506016 [TBL] [Abstract][Full Text] [Related]
7. Bismuth-coated screen-printed electrodes for the simple voltammetric determination of formaldehyde. Malakhova N; Mozharovskaia P; Kifle AB; Kozitsina A Anal Methods; 2022 Sep; 14(35):3423-3433. PubMed ID: 35993393 [TBL] [Abstract][Full Text] [Related]
8. Determination of free formaldehyde in cosmetics containing formaldehyde-releasing preservatives by reversed-phase dispersive liquid-liquid microextraction and liquid chromatography with post-column derivatization. Miralles P; Chisvert A; Alonso MJ; Hernandorena S; Salvador A J Chromatogr A; 2018 Mar; 1543():34-39. PubMed ID: 29478830 [TBL] [Abstract][Full Text] [Related]
9. Electroanalytical detection of pindolol: comparison of unmodified and reduced graphene oxide modified screen-printed graphite electrodes. Cumba LR; Smith JP; Brownson DA; Iniesta J; Metters JP; do Carmo DR; Banks CE Analyst; 2015 Mar; 140(5):1543-50. PubMed ID: 25610919 [TBL] [Abstract][Full Text] [Related]
10. Liquid-phase microextraction with in-drop derivatization combined with microvolume fluorospectrometry for free and hydrolyzed formaldehyde determination in textile samples. Sáenz M; Alvarado J; Pena-Pereira F; Senra-Ferreiro S; Lavilla I; Bendicho C Anal Chim Acta; 2011 Feb; 687(1):50-5. PubMed ID: 21241845 [TBL] [Abstract][Full Text] [Related]
11. A hydrophobic deep eutectic solvent based vortex-assisted liquid-liquid microextraction for the determination of formaldehyde from biological and indoor air samples by high performance liquid chromatography. Zhang K; Liu C; Li S; Fan J J Chromatogr A; 2019 Mar; 1589():39-46. PubMed ID: 30606453 [TBL] [Abstract][Full Text] [Related]
12. Direct and mediated electrochemistry of peroxidase and its electrocatalysis on a variety of screen-printed carbon electrodes: amperometric hydrogen peroxide and phenols biosensor. Chekin F; Gorton L; Tapsobea I Anal Bioanal Chem; 2015 Jan; 407(2):439-46. PubMed ID: 25374125 [TBL] [Abstract][Full Text] [Related]
13. Quantification of ethanol in plasma by electrochemical detection with an unmodified screen printed carbon electrode. Tian G; Zhang XQ; Zhu MS; Zhang Z; Shi ZH; Ding M Sci Rep; 2016 Mar; 6():23569. PubMed ID: 27006081 [TBL] [Abstract][Full Text] [Related]
14. Determination of mercury in indoor dust samples by ultrasonic probe microextraction and stripping voltammetry on gold nanoparticles-modified screen-printed electrodes. Bernalte E; Marín Sánchez C; Pinilla Gil E Talanta; 2012 Aug; 97():187-92. PubMed ID: 22841065 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and characterization of disposable sensors and biosensors for detection of formaldehyde. del Torno-de Román L; Alonso-Lomillo MA; Domínguez-Renedo O; Merino-Sánchez C; Merino-Amayuelas MP; Arcos-Martínez MJ Talanta; 2011 Oct; 86():324-8. PubMed ID: 22063547 [TBL] [Abstract][Full Text] [Related]
16. GDME-based methodology for the determination of free formaldehyde in cosmetics and hygiene products containing formaldehyde releasers. Brandão PF; Ramos RM; Rodrigues JA Anal Bioanal Chem; 2018 Oct; 410(26):6873-6880. PubMed ID: 30062513 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous reflectance and fluorescence measurements for portable formaldehyde determination in milk using a multi-channel spectrometer sensor. Cadeado ANS; Machado CCS; Silva SG Food Chem; 2024 Oct; 464(Pt 1):141583. PubMed ID: 39423528 [TBL] [Abstract][Full Text] [Related]
18. Nickel hexacyanoferrate modified screen-printed carbon electrode for sensitive detection of ascorbic acid and hydrogen peroxide. Lin J; Zhou DM; Hocevar SB; McAdams ET; Ogorevc B; Zhang X Front Biosci; 2005 Jan; 10():483-91. PubMed ID: 15574385 [TBL] [Abstract][Full Text] [Related]