These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32499380)

  • 1. Direction Selective Neurons Responsive to Horizontal Motion in a Crab Reflect an Adaptation to Prevailing Movements in Flat Environments.
    Scarano F; Tomsic D; Sztarker J
    J Neurosci; 2020 Jul; 40(29):5561-5571. PubMed ID: 32499380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A network of visual motion-sensitive neurons for computing object position in an arthropod.
    Medan V; Berón De Astrada M; Scarano F; Tomsic D
    J Neurosci; 2015 Apr; 35(17):6654-66. PubMed ID: 25926445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binocular Neuronal Processing of Object Motion in an Arthropod.
    Scarano F; Sztarker J; Medan V; Berón de Astrada M; Tomsic D
    J Neurosci; 2018 Aug; 38(31):6933-6948. PubMed ID: 30012687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiology and morphology of visual movement detector neurons in a crab (Decapoda: Brachyura).
    Berón de Astrada M; Tomsic D
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Aug; 188(7):539-51. PubMed ID: 12209342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of Small- and Wide-Field Visual Features in Target-Selective Descending Neurons of both Predatory and Nonpredatory Dipterans.
    Nicholas S; Supple J; Leibbrandt R; Gonzalez-Bellido PT; Nordström K
    J Neurosci; 2018 Dec; 38(50):10725-10733. PubMed ID: 30373766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behaviorally related neural plasticity in the arthropod optic lobes.
    Berón de Astrada M; Bengochea M; Sztarker J; Delorenzi A; Tomsic D
    Curr Biol; 2013 Aug; 23(15):1389-98. PubMed ID: 23831291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization of optic lobes that support motion detection in a semiterrestrial crab.
    Sztarker J; Strausfeld NJ; Tomsic D
    J Comp Neurol; 2005 Dec; 493(3):396-411. PubMed ID: 16261533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural organization of the third optic neuropil, the lobula, in the highly visual semiterrestrial crab Neohelice granulata.
    Lepore MG; Tomsic D; Sztarker J
    J Comp Neurol; 2022 Jul; 530(10):1533-1550. PubMed ID: 34985823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization of columnar inputs in the third optic ganglion of a highly visual crab.
    Bengochea M; Berón de Astrada M
    J Physiol Paris; 2014; 108(2-3):61-70. PubMed ID: 24929118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of individual neurons reflecting short- and long-term visual memory in an arthropodo.
    Tomsic D; Berón de Astrada M; Sztarker J
    J Neurosci; 2003 Sep; 23(24):8539-46. PubMed ID: 13679423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A crustacean lobula plate: Morphology, connections, and retinotopic organization.
    Bengochea M; Berón de Astrada M; Tomsic D; Sztarker J
    J Comp Neurol; 2018 Jan; 526(1):109-119. PubMed ID: 28884472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Object approach computation by a giant neuron and its relationship with the speed of escape in the crab Neohelice.
    Oliva D; Tomsic D
    J Exp Biol; 2016 Nov; 219(Pt 21):3339-3352. PubMed ID: 27609763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinotopic pathways providing motion-selective information to the lobula from peripheral elementary motion-detecting circuits.
    Douglass JK; Strausfeld NJ
    J Comp Neurol; 2003 Mar; 457(4):326-44. PubMed ID: 12561074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the functional organization of lobula complex in the mantis brain by identification of visual interneurons.
    Yamawaki Y
    J Comp Neurol; 2019 May; 527(7):1161-1178. PubMed ID: 30552687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice.
    Oliva D; Tomsic D
    J Neurophysiol; 2014 Sep; 112(6):1477-90. PubMed ID: 24899670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus.
    Medan V; Oliva D; Tomsic D
    J Neurophysiol; 2007 Oct; 98(4):2414-28. PubMed ID: 17715192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binocular visual integration in the crustacean nervous system.
    Sztarker J; Tomsic D
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Nov; 190(11):951-62. PubMed ID: 15322847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal processing of translational optic flow in the visual system of the shore crab Carcinus maenas.
    Horseman BG; Macauley MW; Barnes WJ
    J Exp Biol; 2011 May; 214(Pt 9):1586-98. PubMed ID: 21490266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint Encoding of Object Motion and Motion Direction in the Salamander Retina.
    Kühn NK; Gollisch T
    J Neurosci; 2016 Nov; 36(48):12203-12216. PubMed ID: 27903729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Invertebrate vision: peripheral adaptation to repeated object motion.
    Nordström K; Gonzalez-Bellido PT
    Curr Biol; 2013 Aug; 23(15):R655-6. PubMed ID: 23928083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.