These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32499410)

  • 21. CRISPR-Cas: Complex Functional Networks and Multiple Roles beyond Adaptive Immunity.
    Faure G; Makarova KS; Koonin EV
    J Mol Biol; 2019 Jan; 431(1):3-20. PubMed ID: 30193985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis for the assembly of the type V CRISPR-associated transposon complex.
    Schmitz M; Querques I; Oberli S; Chanez C; Jinek M
    Cell; 2022 Dec; 185(26):4999-5010.e17. PubMed ID: 36435179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeted transposition with Tn7 elements: safe sites, mobile plasmids, CRISPR/Cas and beyond.
    Peters JE
    Mol Microbiol; 2019 Dec; 112(6):1635-1644. PubMed ID: 31502713
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Target site selection and remodelling by type V CRISPR-transposon systems.
    Querques I; Schmitz M; Oberli S; Chanez C; Jinek M
    Nature; 2021 Nov; 599(7885):497-502. PubMed ID: 34759315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modularity and diversity of target selectors in Tn7 transposons.
    Faure G; Saito M; Benler S; Peng I; Wolf YI; Strecker J; Altae-Tran H; Neumann E; Li D; Makarova KS; Macrae RK; Koonin EV; Zhang F
    Mol Cell; 2023 Jun; 83(12):2122-2136.e10. PubMed ID: 37267947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR-assisted transposition: TnsC finds (and threads) the needle in the haystack.
    Hossain AA; Marraffini LA
    Mol Cell; 2022 Nov; 82(21):3968-3969. PubMed ID: 36332604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural basis of DNA targeting by a transposon-encoded CRISPR-Cas system.
    Halpin-Healy TS; Klompe SE; Sternberg SH; Fernández IS
    Nature; 2020 Jan; 577(7789):271-274. PubMed ID: 31853065
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assembling the Streptococcus thermophilus clustered regularly interspaced short palindromic repeats (CRISPR) array for multiplex DNA targeting.
    Guo L; Xu K; Liu Z; Zhang C; Xin Y; Zhang Z
    Anal Biochem; 2015 Jun; 478():131-3. PubMed ID: 25748774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New CRISPR-Cas systems discovered.
    Yang H; Patel DJ
    Cell Res; 2017 Mar; 27(3):313-314. PubMed ID: 28220773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional Analysis of Porphyromonas gingivalis W83 CRISPR-Cas Systems.
    Burmistrz M; Dudek B; Staniec D; Rodriguez Martinez JI; Bochtler M; Potempa J; Pyrc K
    J Bacteriol; 2015 Aug; 197(16):2631-41. PubMed ID: 26013482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The CRISPR Growth Spurt: from Bench to Clinic on Versatile Small RNAs.
    Bayat H; Omidi M; Rajabibazl M; Sabri S; Rahimpour A
    J Microbiol Biotechnol; 2017 Feb; 27(2):207-218. PubMed ID: 27840399
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires.
    Silas S; Makarova KS; Shmakov S; Páez-Espino D; Mohr G; Liu Y; Davison M; Roux S; Krishnamurthy SR; Fu BXH; Hansen LL; Wang D; Sullivan MB; Millard A; Clokie MR; Bhaya D; Lambowitz AM; Kyrpides NC; Koonin EV; Fire AZ
    mBio; 2017 Jul; 8(4):. PubMed ID: 28698278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeted Transcriptional Activation Using a CRISPR-Associated Transposon System.
    Garza Elizondo AM; Chappell J
    ACS Synth Biol; 2024 Jan; 13(1):328-336. PubMed ID: 38085703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using the CRISPR-Cas System to Positively Select Mutants in Genes Essential for Its Function.
    Yosef I; Goren MG; Edgar R; Qimron U
    Methods Mol Biol; 2015; 1311():233-50. PubMed ID: 25981477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) RNAs in the Porphyromonas gingivalis CRISPR-Cas I-C System.
    Burmistrz M; Rodriguez Martinez JI; Krochmal D; Staniec D; Pyrc K
    J Bacteriol; 2017 Dec; 199(23):. PubMed ID: 28893837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Advances in molecular mechanisms of adaptive immunity mediated by type I-E CRISPR/Cas system--A review].
    Sun D; Qiu J
    Wei Sheng Wu Xue Bao; 2016 Jan; 56(1):1-7. PubMed ID: 27305774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR RNA-guided integrase enables high-efficiency targeted genome engineering in Agrobacterium tumefaciens.
    Aliu E; Lee K; Wang K
    Plant Biotechnol J; 2022 Oct; 20(10):1916-1927. PubMed ID: 35690588
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Five big mysteries about CRISPR's origins.
    Ledford H
    Nature; 2017 Jan; 541(7637):280-282. PubMed ID: 28102279
    [No Abstract]   [Full Text] [Related]  

  • 40. Suppressing the CRISPR/Cas adaptive immune system in bacterial infections.
    Gholizadeh P; Aghazadeh M; Asgharzadeh M; Kafil HS
    Eur J Clin Microbiol Infect Dis; 2017 Nov; 36(11):2043-2051. PubMed ID: 28601970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.