BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 32499527)

  • 1. Structural and functional evidence of bacterial antiphage protection by Thoeris defense system via NAD
    Ka D; Oh H; Park E; Kim JH; Bae E
    Nat Commun; 2020 Jun; 11(1):2816. PubMed ID: 32499527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural characterization of macro domain-containing Thoeris antiphage defense systems.
    Shi Y; Masic V; Mosaiab T; Rajaratman P; Hartley-Tassell L; Sorbello M; Goulart CC; Vasquez E; Mishra BP; Holt S; Gu W; Kobe B; Ve T
    Sci Adv; 2024 Jun; 10(26):eadn3310. PubMed ID: 38924412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of Thoeris antiviral system via SIR2 effector filament assembly.
    Tamulaitiene G; Sabonis D; Sasnauskas G; Ruksenaite A; Silanskas A; Avraham C; Ofir G; Sorek R; Zaremba M; Siksnys V
    Nature; 2024 Mar; 627(8003):431-436. PubMed ID: 38383786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viruses inhibit TIR gcADPR signalling to overcome bacterial defence.
    Leavitt A; Yirmiya E; Amitai G; Lu A; Garb J; Herbst E; Morehouse BR; Hobbs SJ; Antine SP; Sun ZJ; Kranzusch PJ; Sorek R
    Nature; 2022 Nov; 611(7935):326-331. PubMed ID: 36174646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antiviral activity of bacterial TIR domains via immune signalling molecules.
    Ofir G; Herbst E; Baroz M; Cohen D; Millman A; Doron S; Tal N; Malheiro DBA; Malitsky S; Amitai G; Sorek R
    Nature; 2021 Dec; 600(7887):116-120. PubMed ID: 34853457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic discovery of antiphage defense systems in the microbial pangenome.
    Doron S; Melamed S; Ofir G; Leavitt A; Lopatina A; Keren M; Amitai G; Sorek R
    Science; 2018 Mar; 359(6379):. PubMed ID: 29371424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Landscape of New Nuclease-Containing Antiphage Systems in Escherichia coli and the Counterdefense Roles of Bacteriophage T4 Genome Modifications.
    Wang S; Sun E; Liu Y; Yin B; Zhang X; Li M; Huang Q; Tan C; Qian P; Rao VB; Tao P
    J Virol; 2023 Jun; 97(6):e0059923. PubMed ID: 37306585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalent Modifications of the Bacteriophage Genome Confer a Degree of Resistance to Bacterial CRISPR Systems.
    Liu Y; Dai L; Dong J; Chen C; Zhu J; Rao VB; Tao P
    J Virol; 2020 Nov; 94(23):. PubMed ID: 32938767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nucleotide-sensing endonuclease from the Gabija bacterial defense system.
    Cheng R; Huang F; Wu H; Lu X; Yan Y; Yu B; Wang X; Zhu B
    Nucleic Acids Res; 2021 May; 49(9):5216-5229. PubMed ID: 33885789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A unique mode of nucleic acid immunity performed by a multifunctional bacterial enzyme.
    Bari SMN; Chou-Zheng L; Howell O; Hossain M; Hill CM; Boyle TA; Cater K; Dandu VS; Thomas A; Aslan B; Hatoum-Aslan A
    Cell Host Microbe; 2022 Apr; 30(4):570-582.e7. PubMed ID: 35421352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic Nucleotide Signaling in Phage Defense and Counter-Defense.
    Athukoralage JS; White MF
    Annu Rev Virol; 2022 Sep; 9(1):451-468. PubMed ID: 35567297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A DNA phosphorothioation-based Dnd defense system provides resistance against various phages and is compatible with the Ssp defense system.
    Jiang S; Chen K; Wang Y; Zhang Y; Tang Y; Huang W; Xiong X; Chen S; Chen C; Wang L
    mBio; 2023 Aug; 14(4):e0093323. PubMed ID: 37260233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved domains can be found across distinct phage defence systems.
    Mariano G; Blower TR
    Mol Microbiol; 2023 Jul; 120(1):45-53. PubMed ID: 36840376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BacteRiophage EXclusion (BREX): A novel anti-phage mechanism in the arsenal of bacterial defense system.
    Chaudhary K
    J Cell Physiol; 2018 Feb; 233(2):771-773. PubMed ID: 28444888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of NAD
    Klontz E; Obi JO; Wang Y; Glendening G; Carr J; Tsibouris C; Buddula S; Nallar S; Soares AS; Beckett D; Redzic JS; Eisenmesser E; Palm C; Schmidt K; Scudder AH; Obiorah T; Essuman K; Milbrandt J; Diantonio A; Ray K; Snyder MLD; Deredge D; Snyder GA
    J Biol Chem; 2023 Nov; 299(11):105290. PubMed ID: 37758001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SspABCD-SspFGH Constitutes a New Type of DNA Phosphorothioate-Based Bacterial Defense System.
    Wang S; Wan M; Huang R; Zhang Y; Xie Y; Wei Y; Ahmad M; Wu D; Hong Y; Deng Z; Chen S; Li Z; Wang L
    mBio; 2021 Apr; 12(2):. PubMed ID: 33906925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant and prokaryotic TIR domains generate distinct cyclic ADPR NADase products.
    Bayless AM; Chen S; Ogden SC; Xu X; Sidda JD; Manik MK; Li S; Kobe B; Ve T; Song L; Grant M; Wan L; Nishimura MT
    Sci Adv; 2023 Mar; 9(11):eade8487. PubMed ID: 36930706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the Frozen Armory: Antiphage Defense Systems in Cold-Adapted Bacteria with a Focus on CRISPR-Cas Systems.
    Sandsdalen GD; Kumar A; Hjerde E
    Microorganisms; 2024 May; 12(5):. PubMed ID: 38792857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of antiphage immunity generated by a prokaryotic Argonaute-associated SPARSA system.
    Zhen X; Xu X; Ye L; Xie S; Huang Z; Yang S; Wang Y; Li J; Long F; Ouyang S
    Nat Commun; 2024 Jan; 15(1):450. PubMed ID: 38200015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knowing Our Enemy in the Antimicrobial Resistance Era: Dissecting the Molecular Basis of Bacterial Defense Systems.
    Martínez M; Rizzuto I; Molina R
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38732145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.