These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 32499682)

  • 1. EZcalcium: Open-Source Toolbox for Analysis of Calcium Imaging Data.
    Cantu DA; Wang B; Gongwer MW; He CX; Goel A; Suresh A; Kourdougli N; Arroyo ED; Zeiger W; Portera-Cailliau C
    Front Neural Circuits; 2020; 14():25. PubMed ID: 32499682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CaImAn an open source tool for scalable calcium imaging data analysis.
    Giovannucci A; Friedrich J; Gunn P; Kalfon J; Brown BL; Koay SA; Taxidis J; Najafi F; Gauthier JL; Zhou P; Khakh BS; Tank DW; Chklovskii DB; Pnevmatikakis EA
    Elife; 2019 Jan; 8():. PubMed ID: 30652683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated quantification of neuronal networks and single-cell calcium dynamics using calcium imaging.
    Patel TP; Man K; Firestein BL; Meaney DF
    J Neurosci Methods; 2015 Mar; 243():26-38. PubMed ID: 25629800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Photon Processor and SeNeCA: a freely available software package to process data from two-photon calcium imaging at speeds down to several milliseconds per frame.
    Tomek J; Novak O; Syka J
    J Neurophysiol; 2013 Jul; 110(1):243-56. PubMed ID: 23576700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence imaging of large-scale neural ensemble dynamics.
    Kim TH; Schnitzer MJ
    Cell; 2022 Jan; 185(1):9-41. PubMed ID: 34995519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SIMA: Python software for analysis of dynamic fluorescence imaging data.
    Kaifosh P; Zaremba JD; Danielson NB; Losonczy A
    Front Neuroinform; 2014; 8():80. PubMed ID: 25295002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minian, an open-source miniscope analysis pipeline.
    Dong Z; Mau W; Feng Y; Pennington ZT; Chen L; Zaki Y; Rajan K; Shuman T; Aharoni D; Cai DJ
    Elife; 2022 Jun; 11():. PubMed ID: 35642786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data.
    Pnevmatikakis EA; Giovannucci A
    J Neurosci Methods; 2017 Nov; 291():83-94. PubMed ID: 28782629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical calcium imaging using DNA-encoded fluorescence sensors in transgenic fruit flies, Drosophila melanogaster.
    Dipt S; Riemensperger T; Fiala A
    Methods Mol Biol; 2014; 1071():195-206. PubMed ID: 24052390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical-flow analysis toolbox for characterization of spatiotemporal dynamics in mesoscale optical imaging of brain activity.
    Afrashteh N; Inayat S; Mohsenvand M; Mohajerani MH
    Neuroimage; 2017 Jun; 153():58-74. PubMed ID: 28351691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved deep two-photon calcium imaging in vivo.
    Birkner A; Tischbirek CH; Konnerth A
    Cell Calcium; 2017 Jun; 64():29-35. PubMed ID: 28027798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-photon imaging of neural population activity in zebrafish.
    Renninger SL; Orger MB
    Methods; 2013 Aug; 62(3):255-67. PubMed ID: 23727462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-photon calcium imaging in the intact brain.
    Maschio MD; Beltramo R; De Stasi AM; Fellin T
    Adv Exp Med Biol; 2012; 740():83-102. PubMed ID: 22453939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volumetric two-photon imaging of neurons using stereoscopy (vTwINS).
    Song A; Charles AS; Koay SA; Gauthier JL; Thiberge SY; Pillow JW; Tank DW
    Nat Methods; 2017 Apr; 14(4):420-426. PubMed ID: 28319111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesoscopic Imaging: Shining a Wide Light on Large-Scale Neural Dynamics.
    Cardin JA; Crair MC; Higley MJ
    Neuron; 2020 Oct; 108(1):33-43. PubMed ID: 33058764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. jYCaMP: an optimized calcium indicator for two-photon imaging at fiber laser wavelengths.
    Mohr MA; Bushey D; Aggarwal A; Marvin JS; Kim JJ; Marquez EJ; Liang Y; Patel R; Macklin JJ; Lee CY; Tsang A; Tsegaye G; Ahrens AM; Chen JL; Kim DS; Wong AM; Looger LL; Schreiter ER; Podgorski K
    Nat Methods; 2020 Jul; 17(7):694-697. PubMed ID: 32451475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and robust active neuron segmentation in two-photon calcium imaging using spatiotemporal deep learning.
    Soltanian-Zadeh S; Sahingur K; Blau S; Gong Y; Farsiu S
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8554-8563. PubMed ID: 30975747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-photon imaging of synthetic dyes in deep layers of the neocortex.
    Liu CJ; Roy A; Simons AA; Farinella DM; Kara P
    Sci Rep; 2020 Oct; 10(1):16351. PubMed ID: 33004996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing.
    Cheng A; Gonçalves JT; Golshani P; Arisaka K; Portera-Cailliau C
    Nat Methods; 2011 Feb; 8(2):139-42. PubMed ID: 21217749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-photon frequency division multiplexing for functional in vivo imaging: a feasibility study.
    Tsyboulski D; Orlova N; Ledochowitsch P; Saggau P
    Opt Express; 2019 Feb; 27(4):4488-4503. PubMed ID: 30876067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.