BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32499691)

  • 1. Optimality Principles in Human Point-to-Manifold Reaching Accounting for Muscle Dynamics.
    Wochner I; Driess D; Zimmermann H; Haeufle DFB; Toussaint M; Schmitt S
    Front Comput Neurosci; 2020; 14():38. PubMed ID: 32499691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manifold reaching paradigm: how do we handle target redundancy?
    Berret B; Chiovetto E; Nori F; Pozzo T
    J Neurophysiol; 2011 Oct; 106(4):2086-102. PubMed ID: 21734107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements.
    Berret B; Darlot C; Jean F; Pozzo T; Papaxanthis C; Gauthier JP
    PLoS Comput Biol; 2008 Oct; 4(10):e1000194. PubMed ID: 18949023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for composite cost functions in arm movement planning: an inverse optimal control approach.
    Berret B; Chiovetto E; Nori F; Pozzo T
    PLoS Comput Biol; 2011 Oct; 7(10):e1002183. PubMed ID: 22022242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-Body Reaching Movements Formulated by Minimum Muscle-Tension Change Criterion.
    Kudo N; Choi K; Kagawa T; Uno Y
    Neural Comput; 2016 May; 28(5):950-69. PubMed ID: 26942751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategy of arm movement control is determined by minimization of neural effort for joint coordination.
    Dounskaia N; Shimansky Y
    Exp Brain Res; 2016 Jun; 234(6):1335-50. PubMed ID: 26983620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimality in neuromuscular systems.
    Theodorou E; Valero-Cuevas FJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4510-6. PubMed ID: 21095783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning and generation of goal-directed arm reaching from scratch.
    Kambara H; Kim K; Shin D; Sato M; Koike Y
    Neural Netw; 2009 May; 22(4):348-61. PubMed ID: 19121565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of trajectory planning models for arm-reaching movements based on energy cost.
    Nishii J; Taniai Y
    Neural Comput; 2009 Sep; 21(9):2634-47. PubMed ID: 19548798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Hybrid Framework for Understanding and Predicting Human Reaching Motions.
    Oguz OS; Zhou Z; Wollherr D
    Front Robot AI; 2018; 5():27. PubMed ID: 33500914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational motor control: redundancy and invariance.
    Guigon E; Baraduc P; Desmurget M
    J Neurophysiol; 2007 Jan; 97(1):331-47. PubMed ID: 17005621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How does the CNS control arm reaching movements? Introducing a hierarchical nonlinear predictive control organization based on the idea of muscle synergies.
    Dehghani S; Bahrami F
    PLoS One; 2020; 15(2):e0228726. PubMed ID: 32023300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for learning human reaching movements.
    Karniel A; Inbar GF
    Biol Cybern; 1997 Sep; 77(3):173-83. PubMed ID: 9352631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive Simulation of Reaching Moving Targets Using Nonlinear Model Predictive Control.
    Mehrabi N; Sharif Razavian R; Ghannadi B; McPhee J
    Front Comput Neurosci; 2016; 10():143. PubMed ID: 28133449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimality of a kip performance on the high bar: an example of skilled goal-directed whole-body movement.
    Yamasaki T; Gotoh K; Xin X
    Hum Mov Sci; 2010 Jun; 29(3):464-82. PubMed ID: 20451277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncontrolled Manifold Reference Feedback Control of Multi-Joint Robot Arms.
    Togo S; Kagawa T; Uno Y
    Front Comput Neurosci; 2016; 10():69. PubMed ID: 27462215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimality of Upper-Arm Reaching Trajectories Based on the Expected Value of the Metabolic Energy Cost.
    Taniai Y; Nishii J
    Neural Comput; 2015 Aug; 27(8):1721-37. PubMed ID: 26079750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning.
    Hayashibe M; Shimoda S
    Front Comput Neurosci; 2014; 8():21. PubMed ID: 24616695
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.