BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

712 related articles for article (PubMed ID: 32499785)

  • 1. Myeloid Cell-Derived Arginase in Cancer Immune Response.
    Grzywa TM; Sosnowska A; Matryba P; Rydzynska Z; Jasinski M; Nowis D; Golab J
    Front Immunol; 2020; 11():938. PubMed ID: 32499785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment.
    Steggerda SM; Bennett MK; Chen J; Emberley E; Huang T; Janes JR; Li W; MacKinnon AL; Makkouk A; Marguier G; Murray PJ; Neou S; Pan A; Parlati F; Rodriguez MLM; Van de Velde LA; Wang T; Works M; Zhang J; Zhang W; Gross MI
    J Immunother Cancer; 2017 Dec; 5(1):101. PubMed ID: 29254508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives.
    Raber P; Ochoa AC; Rodríguez PC
    Immunol Invest; 2012; 41(6-7):614-34. PubMed ID: 23017138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial arginase-2 is a cell‑autonomous regulator of CD8+ T cell function and antitumor efficacy.
    Martí i Líndez AA; Dunand-Sauthier I; Conti M; Gobet F; Núñez N; Hannich JT; Riezman H; Geiger R; Piersigilli A; Hahn K; Lemeille S; Becher B; De Smedt T; Hugues S; Reith W
    JCI Insight; 2019 Nov; 4(24):. PubMed ID: 31751318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of Myeloid Cell Arginase Activity leads to Therapeutic Response in a NSCLC Mouse Model by Activating Anti-Tumor Immunity.
    Miret JJ; Kirschmeier P; Koyama S; Zhu M; Li YY; Naito Y; Wu M; Malladi VS; Huang W; Walker W; Palakurthi S; Dranoff G; Hammerman PS; Pecot CV; Wong KK; Akbay EA
    J Immunother Cancer; 2019 Feb; 7(1):32. PubMed ID: 30728077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives.
    Rodríguez PC; Ochoa AC
    Immunol Rev; 2008 Apr; 222():180-91. PubMed ID: 18364002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arginine and Arginases Modulate Metabolism, Tumor Microenvironment and Prostate Cancer Progression.
    Matos A; Carvalho M; Bicho M; Ribeiro R
    Nutrients; 2021 Dec; 13(12):. PubMed ID: 34960055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses.
    Rodriguez PC; Quiceno DG; Zabaleta J; Ortiz B; Zea AH; Piazuelo MB; Delgado A; Correa P; Brayer J; Sotomayor EM; Antonia S; Ochoa JB; Ochoa AC
    Cancer Res; 2004 Aug; 64(16):5839-49. PubMed ID: 15313928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment.
    Su X; Xu Y; Fox GC; Xiang J; Kwakwa KA; Davis JL; Belle JI; Lee WC; Wong WH; Fontana F; Hernandez-Aya LF; Kobayashi T; Tomasson HM; Su J; Bakewell SJ; Stewart SA; Egbulefu C; Karmakar P; Meyer MA; Veis DJ; DeNardo DG; Lanza GM; Achilefu S; Weilbaecher KN
    J Clin Invest; 2021 Oct; 131(20):. PubMed ID: 34520398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arginase 1 is a key driver of immune suppression in pancreatic cancer.
    Menjivar RE; Nwosu ZC; Du W; Donahue KL; Hong HS; Espinoza C; Brown K; Velez-Delgado A; Yan W; Lima F; Bischoff A; Kadiyala P; Salas-Escabillas D; Crawford HC; Bednar F; Carpenter E; Zhang Y; Halbrook CJ; Lyssiotis CA; Pasca di Magliano M
    Elife; 2023 Feb; 12():. PubMed ID: 36727849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boronic acid-based arginase inhibitors in cancer immunotherapy.
    Borek B; Gajda T; Golebiowski A; Blaszczyk R
    Bioorg Med Chem; 2020 Sep; 28(18):115658. PubMed ID: 32828425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arginase: an emerging key player in the mammalian immune system.
    Munder M
    Br J Pharmacol; 2009 Oct; 158(3):638-51. PubMed ID: 19764983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes.
    Rodriguez PC; Ernstoff MS; Hernandez C; Atkins M; Zabaleta J; Sierra R; Ochoa AC
    Cancer Res; 2009 Feb; 69(4):1553-60. PubMed ID: 19201693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PGE(2)-driven induction and maintenance of cancer-associated myeloid-derived suppressor cells.
    Obermajer N; Wong JL; Edwards RP; Odunsi K; Moysich K; Kalinski P
    Immunol Invest; 2012; 41(6-7):635-57. PubMed ID: 23017139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of trypanosomatid's arginase in polyamine biosynthesis and pathogenesis.
    Balaña-Fouce R; Calvo-Álvarez E; Álvarez-Velilla R; Prada CF; Pérez-Pertejo Y; Reguera RM
    Mol Biochem Parasitol; 2012 Feb; 181(2):85-93. PubMed ID: 22033378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Relay Pathway between Arginine and Tryptophan Metabolism Confers Immunosuppressive Properties on Dendritic Cells.
    Mondanelli G; Bianchi R; Pallotta MT; Orabona C; Albini E; Iacono A; Belladonna ML; Vacca C; Fallarino F; Macchiarulo A; Ugel S; Bronte V; Gevi F; Zolla L; Verhaar A; Peppelenbosch M; Mazza EMC; Bicciato S; Laouar Y; Santambrogio L; Puccetti P; Volpi C; Grohmann U
    Immunity; 2017 Feb; 46(2):233-244. PubMed ID: 28214225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion.
    Zea AH; Rodriguez PC; Atkins MB; Hernandez C; Signoretti S; Zabaleta J; McDermott D; Quiceno D; Youmans A; O'Neill A; Mier J; Ochoa AC
    Cancer Res; 2005 Apr; 65(8):3044-8. PubMed ID: 15833831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myeloid-derived suppressor cells reveal radioprotective properties through arginase-induced l-arginine depletion.
    Leonard W; Dufait I; Schwarze JK; Law K; Engels B; Jiang H; Van den Berge D; Gevaert T; Storme G; Verovski V; Breckpot K; De Ridder M
    Radiother Oncol; 2016 May; 119(2):291-9. PubMed ID: 26874542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of immune responses by L-arginine metabolism.
    Bronte V; Zanovello P
    Nat Rev Immunol; 2005 Aug; 5(8):641-54. PubMed ID: 16056256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginase 1-Based Immune Modulatory Vaccines Induce Anticancer Immunity and Synergize with Anti-PD-1 Checkpoint Blockade.
    Aaboe Jørgensen M; Ugel S; Linder Hübbe M; Carretta M; Perez-Penco M; Weis-Banke SE; Martinenaite E; Kopp K; Chapellier M; Adamo A; De Sanctis F; Frusteri C; Iezzi M; Zocca MB; Hargbøll Madsen D; Wakatsuki Pedersen A; Bronte V; Andersen MH
    Cancer Immunol Res; 2021 Nov; 9(11):1316-1326. PubMed ID: 34518197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.