These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32499792)

  • 1. Reprogramming of the Developmental Program of
    Hirano T; Kimura S; Sakamoto T; Okamoto A; Nakayama T; Matsuura T; Ikeda Y; Takeda S; Suzuki Y; Ohshima I; Sato MH
    Front Plant Sci; 2020; 11():471. PubMed ID: 32499792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab-GALFA, A bioassay for insect gall formation using the model plant Arabidopsis thaliana.
    Hirano T; Okamoto A; Oda Y; Sakamoto T; Takeda S; Matsuura T; Ikeda Y; Higaki T; Kimura S; Sato MH
    Sci Rep; 2023 Feb; 13(1):2554. PubMed ID: 36781988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptome analysis of galls from four different host plants suggests the molecular mechanism of gall development.
    Takeda S; Yoza M; Amano T; Ohshima I; Hirano T; Sato MH; Sakamoto T; Kimura S
    PLoS One; 2019; 14(10):e0223686. PubMed ID: 31647845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A chromosome-level genome assembly of the Rhus gall aphid Schlechtendalia chinensis provides insight into the endogenization of Parvovirus-like DNA sequences.
    Ahmad A; von Dohlen C; Ren Z
    BMC Genomics; 2024 Jan; 25(1):16. PubMed ID: 38166596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Complex Nutrient Exchange Between a Gall-Forming Aphid and Its Plant Host.
    Chen X; Yang Z; Chen H; Qi Q; Liu J; Wang C; Shao S; Lu Q; Li Y; Wu H; King-Jones K; Chen MS
    Front Plant Sci; 2020; 11():811. PubMed ID: 32733495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide identification and characterization of the chemosensory relative protein genes in Rhus gall aphid Schlechtendalia chinensis.
    He H; Crabbe MJC; Ren Z
    BMC Genomics; 2023 Apr; 24(1):222. PubMed ID: 37118660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microenvironmental analysis of two alternating hosts and their impact on the ecological adaptation of the horned sumac gall aphid Schlechtendalia chinensis (Hemiptera, Pemphiginae).
    Wang C; Liu P; Chen X; Liu J; Lu Q; Shao S; Yang Z; Chen H; King-Jones K
    Sci Rep; 2020 Jan; 10(1):435. PubMed ID: 31949256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gall development and clone dynamics of the galling aphid Schlechtendalia chinensis (Hemiptera: Pemphigidae).
    Shao SX; Yang ZX; Chen XM
    J Econ Entomol; 2013 Aug; 106(4):1628-37. PubMed ID: 24020275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation and diversification of the microbiome of Schlechtendalia chinensis on two alternate host plants.
    Wu HX; Chen X; Chen H; Lu Q; Yang Z; Ren W; Liu J; Shao S; Wang C; King-Jones K; Chen MS
    PLoS One; 2018; 13(11):e0200049. PubMed ID: 30408037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detoxification Gene Families at the Genome-Wide Level of
    He H; Crabbe MJC; Ren Z
    Genes (Basel); 2022 Sep; 13(9):. PubMed ID: 36140795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and Histologic Adaptation of Horned Gall Induced by the Aphid
    Lu Q; Chen X; Yang Z; Bashir NH; Liu J; Cui Y; Shao S; Chen MS; Chen H
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of two gall-forming arthropods on the photosynthetic rates of their hosts.
    Larson KC
    Oecologia; 1998 Jun; 115(1-2):161-166. PubMed ID: 28308447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Progress Regarding the Molecular Aspects of Insect Gall Formation.
    Takeda S; Hirano T; Ohshima I; Sato MH
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles played by invertase and gene expression in the development of the horn-shaped gall on leaves of Rhus chinensis.
    Ruan ZY; Chen XM; Yang P; Wang BY
    Funct Plant Biol; 2017 Nov; 44(12):1160-1170. PubMed ID: 32480641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds.
    Oliveira DC; Isaias RMS; Fernandes GW; Ferreira BG; Carneiro RGS; Fuzaro L
    J Insect Physiol; 2016 Jan; 84():103-113. PubMed ID: 26620152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genetic diversity and structure of
    Ren Z; He H; Zhang Y; Xu Y; Su X
    J Genet; 2023; 102():. PubMed ID: 37537853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full-length cloning, sequence analysis and expression detection of the β-tubulin gene from the Chinese gall aphid (Schlechtendalia chinensis).
    Liu P; Yang ZX; Chen XM; Chen H
    Sci Rep; 2017 Jul; 7(1):6459. PubMed ID: 28743930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete mitochondrial genome of the
    Ren ZM; Bai X; Harris AJ; Wen J
    Mitochondrial DNA B Resour; 2016 Nov; 1(1):849-850. PubMed ID: 33473653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the diversity of galls on
    Takeda S; Yoza M; Ueda S; Takeuchi S; Maeno A; Sakamoto T; Kimura S
    Plant Direct; 2024 Jul; 8(7):e619. PubMed ID: 38962171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine-Scale analysis of both wild and cultivated horned galls provides insight into their quality differentiation.
    Tian X; Sang Z; Lan Z; Liu W; Feng Y; Hu J; Chen F; Liu Y
    BMC Plant Biol; 2023 Sep; 23(1):426. PubMed ID: 37710158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.