BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 32500741)

  • 41. Adipose tissue NAD
    Jokinen R; Pirnes-Karhu S; Pietiläinen KH; Pirinen E
    Redox Biol; 2017 Aug; 12():246-263. PubMed ID: 28279944
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Poly(ADP-ribose) may signal changing metabolic conditions to the chromatin of mammalian cells.
    Loetscher P; Alvarez-Gonzalez R; Althaus FR
    Proc Natl Acad Sci U S A; 1987 Mar; 84(5):1286-9. PubMed ID: 3103132
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Alteration in methyl-methanesulfonate-induced poly(ADP-ribosyl)ation by 2-butoxyethanol in Syrian hamster embryo cells.
    Hoflack JC; Durand MJ; Poirier GG; Maul A; Vasseur P
    Carcinogenesis; 1997 Dec; 18(12):2333-8. PubMed ID: 9450478
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanisms of poly(ADP-ribose) polymerase catalysis; mono-ADP-ribosylation of poly(ADP-ribose) polymerase at nanomolar concentrations of NAD.
    Bauer PI; Hakam A; Kun E
    FEBS Lett; 1986 Jan; 195(1-2):331-8. PubMed ID: 2935422
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Introduction to poly(ADP-ribose) metabolism.
    Diefenbach J; Bürkle A
    Cell Mol Life Sci; 2005 Apr; 62(7-8):721-30. PubMed ID: 15868397
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Glucose deprivation converts poly(ADP-ribose) polymerase-1 hyperactivation into a transient energy-producing process.
    Buonvicino D; Formentini L; Cipriani G; Chiarugi A
    J Biol Chem; 2013 Dec; 288(51):36530-7. PubMed ID: 24194524
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Glucocorticoid-induced cell death and poly[adenosine diphosphate(ADP)-ribosyl]ation: increased toxicity of dexamethasone on mouse S49.1 lymphoma cells with the poly(ADP-ribosyl)ation inhibitor benzamide.
    Wielckens K; Delfs T
    Endocrinology; 1986 Nov; 119(5):2383-92. PubMed ID: 2429833
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ex vivo supplementation with nicotinic acid enhances cellular poly(ADP-ribosyl)ation and improves cell viability in human peripheral blood mononuclear cells.
    Weidele K; Kunzmann A; Schmitz M; Beneke S; Bürkle A
    Biochem Pharmacol; 2010 Oct; 80(7):1103-12. PubMed ID: 20599792
    [TBL] [Abstract][Full Text] [Related]  

  • 49. NAD
    Xie N; Zhang L; Gao W; Huang C; Huber PE; Zhou X; Li C; Shen G; Zou B
    Signal Transduct Target Ther; 2020 Oct; 5(1):227. PubMed ID: 33028824
    [TBL] [Abstract][Full Text] [Related]  

  • 50. NAD and the aging process: Role in life, death and everything in between.
    Chini CCS; Tarragó MG; Chini EN
    Mol Cell Endocrinol; 2017 Nov; 455():62-74. PubMed ID: 27825999
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sirtuins in aging and age-related disease.
    Longo VD; Kennedy BK
    Cell; 2006 Jul; 126(2):257-68. PubMed ID: 16873059
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Equilibrium model in an in vitro poly(ADP-ribose) turnover system.
    Lagueux J; Ménard L; Candas B; Brochu G; Potvin F; Verreault A; Cook PF; Poirier GG
    Biochim Biophys Acta; 1995 Nov; 1264(2):201-8. PubMed ID: 7495864
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DeoxyNAD and deoxyADP-ribosylation of proteins.
    Alvarez-Gonzalez R
    Mol Cell Biochem; 1994 Sep; 138(1-2):213-9. PubMed ID: 7898466
    [TBL] [Abstract][Full Text] [Related]  

  • 54. ART2, a T cell surface mono-ADP-ribosyltransferase, generates extracellular poly(ADP-ribose).
    Morrison AR; Moss J; Stevens LA; Evans JE; Farrell C; Merithew E; Lambright DG; Greiner DL; Mordes JP; Rossini AA; Bortell R
    J Biol Chem; 2006 Nov; 281(44):33363-72. PubMed ID: 16931513
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interplay between compartmentalized NAD
    Cohen MS
    Genes Dev; 2020 Mar; 34(5-6):254-262. PubMed ID: 32029457
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases.
    Borra MT; O'Neill FJ; Jackson MD; Marshall B; Verdin E; Foltz KR; Denu JM
    J Biol Chem; 2002 Apr; 277(15):12632-41. PubMed ID: 11812793
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mono- and poly(ADP-ribose) metabolism following DNA damage.
    Jacobson MK; Smith JY; Mingmuang M; Payne DM; Jacobson EL
    Princess Takamatsu Symp; 1983; 13():165-74. PubMed ID: 6317635
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Poly(ADP-ribose): PARadigms and PARadoxes.
    Bürkle A; Virág L
    Mol Aspects Med; 2013 Dec; 34(6):1046-65. PubMed ID: 23290998
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oligo(3'-deoxy ADP-ribosyl)ation of the nuclear matrix lamins from rat liver utilizing 3'-deoxyNAD as a substrate.
    Pedraza-Reyes M; Alvarez-Gonzalez R
    FEBS Lett; 1990 Dec; 277(1-2):88-92. PubMed ID: 2125280
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Meta-iodobenzylguanidine (MIBG), a novel high-affinity substrate for cholera toxin that interferes with cellular mono(ADP-ribosylation).
    Loesberg C; van Rooij H; Smets LA
    Biochim Biophys Acta; 1990 Jan; 1037(1):92-9. PubMed ID: 2104758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.