These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 325008)

  • 41. In vivo 19F nuclear magnetic resonance spectroscopy: a potential monitor of 5-fluorouracil pharmacokinetics and metabolism.
    Evelhoch JL
    Invest New Drugs; 1989 Apr; 7(1):5-12. PubMed ID: 2661482
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Carbon-13 NMR studies on [4-13C] uracil labelled E. coli transfer RNA1(Val1).
    Schweizer MP; Hamill WD; Walkiw IJ; Horton WJ; Grant DM
    Nucleic Acids Res; 1980 May; 8(9):2075-83. PubMed ID: 7001371
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isolation and partial characterization of Escherichia coli valine transfer RNA with uridine-derived residues replaced by 5-fluorouridine.
    Horowitz J; Ou CN; Ishaq M
    J Mol Biol; 1974 Sep; 88(2):301-12. PubMed ID: 4616086
    [No Abstract]   [Full Text] [Related]  

  • 44. Noninvasive spectroscopic analysis of fluoropyrimidine metabolism in cultured tumor cells.
    Keniry M; Benz C; Shafer RH; James TL
    Cancer Res; 1986 Apr; 46(4 Pt 1):1754-8. PubMed ID: 3456267
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein synthetic ability of Escherichia coli valine transfer RNA with pseudouridine, ribothymidine, and other uridine-derived residues replaced by 5-fluorouridine.
    Ofengand J; Bierbaum J
    J Mol Biol; 1974 Sep; 88(2):313-25. PubMed ID: 4616087
    [No Abstract]   [Full Text] [Related]  

  • 46. Nuclear-spin-labeled nucleic acids. 1 19F nuclear magnetic resonance of Escherchia coli 5-fluorouracil-5S-RNA.
    Marshall AG; Smith JL
    J Am Chem Soc; 1977 Jan; 99(2):635-6. PubMed ID: 318664
    [No Abstract]   [Full Text] [Related]  

  • 47. Quantitative determination of the number of secondary and tertiary structure base pairs in transfer RNA in solution.
    Bolton PH; Jones CR; Bastedo-Lerner D; Wong KL; Kearns DR
    Biochemistry; 1976 Oct; 15(20):4370-7. PubMed ID: 788776
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conformational differences between complexes of elongation factor Tu studied 19F-NMR spectroscopy.
    Eccleston JF; Molloy DP; Hinds MG; King RW; Feeney J
    Eur J Biochem; 1993 Dec; 218(3):1041-7. PubMed ID: 8281922
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Heterologous mischarging as a means of tRNA fractionation. II. Isolation of E. coli tRNA1Val and tRNA1Ala.
    León G; Ruiz N; Meza L; Krauskopf M
    Experientia; 1977 Aug; 33(8):1029-30. PubMed ID: 142648
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Isolation and characterization of N6-methyladenosine from Escherichia coli valine transfer RNA.
    Saneyoshi M; Harada F; Nishimura S
    Biochim Biophys Acta; 1969 Oct; 190(2):264-73. PubMed ID: 4900574
    [No Abstract]   [Full Text] [Related]  

  • 51. Assignment of the hydrogen bonded proton resonances in (Escherichia coli) tRNAGlu by sequential melting.
    Hilbers CW; Shulman RG
    Proc Natl Acad Sci U S A; 1974 Aug; 71(8):3239-42. PubMed ID: 4606251
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rabbit liver tRNA1Val:II. unusual secondary structure of T psi C stem and loop due to a U54:A60 base pair.
    Jank P; Riesner D; Gross HJ
    Nucleic Acids Res; 1977 Jun; 4(6):2009-200. PubMed ID: 331268
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Proton nuclear magnetic resonance of spin-labeled Escherichia coli tRNAf1MET.
    Daniel WE; Cohn M
    Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2582-6. PubMed ID: 1101259
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Specific hybridization of amino acid-specific transfer RNA to DNA in Escherichia coli.
    Seno T; Nishimura S
    Biochim Biophys Acta; 1968 Mar; 157(1):97-106. PubMed ID: 4868253
    [No Abstract]   [Full Text] [Related]  

  • 55. High resolution phosphorus NMR spectroscopy of transfer ribonucleic acids.
    Gorenstein DG; Goldfield EM
    Mol Cell Biochem; 1982 Jul; 46(2):97-120. PubMed ID: 6180293
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nuclear magnetic resonance studies on the tertiary folding of transfer ribonucleic acid: assignment of the 7-methylguanosine resonance.
    Hurd RE; Reid BR
    Biochemistry; 1979 Sep; 18(18):4017-24. PubMed ID: 385042
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of zinc ions on tRNA structure: imino proton NMR spectroscopy.
    Flanagan JM; Jacobson KB
    Biochemistry; 1988 Jul; 27(15):5778-85. PubMed ID: 3052585
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of acceptor stem conformation in tRNAVal recognition by its cognate synthetase.
    Liu M; Chu WC; Liu JC; Horowitz J
    Nucleic Acids Res; 1997 Dec; 25(24):4883-90. PubMed ID: 9396792
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3-(3-Amino-3-carboxypropyl)uridine: a novel modified nucleoside isolated from Escherichia coli phenylalanine transfer ribonucleic acid.
    Ohashi Z; Maeda M; McCloskey JA; Nishimura S
    Biochemistry; 1974 Jun; 13(12):2620-5. PubMed ID: 4598734
    [No Abstract]   [Full Text] [Related]  

  • 60. Studies on 5-fluorouracil-containing ribonucleic acid. I. Separation and partial characterization of fluorouracil-containing transfer ribonucleic acids from Escherichia coli.
    Kaiser II
    Biochemistry; 1969 Jan; 8(1):231-8. PubMed ID: 4887853
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.