These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 32501060)
1. Compaction Model for Highly Deformable Particle Assemblies. Cantor D; Cárdenas-Barrantes M; Preechawuttipong I; Renouf M; Azéma E Phys Rev Lett; 2020 May; 124(20):208003. PubMed ID: 32501060 [TBL] [Abstract][Full Text] [Related]
2. Compaction of mixtures of rigid and highly deformable particles: A micromechanical model. Cárdenas-Barrantes M; Cantor D; Barés J; Renouf M; Azéma E Phys Rev E; 2020 Sep; 102(3-1):032904. PubMed ID: 33075867 [TBL] [Abstract][Full Text] [Related]
3. Micromechanical description of the compaction of soft pentagon assemblies. Cárdenas-Barrantes M; Cantor D; Barés J; Renouf M; Azéma E Phys Rev E; 2021 Jun; 103(6-1):062902. PubMed ID: 34271662 [TBL] [Abstract][Full Text] [Related]
4. Experimental validation of a micromechanically based compaction law for mixtures of soft and hard grains. Cárdenas-Barrantes M; Barés J; Renouf M; Azéma É Phys Rev E; 2022 Aug; 106(2):L022901. PubMed ID: 36109894 [TBL] [Abstract][Full Text] [Related]
5. A soft departure from jamming: the compaction of deformable granular matter under high pressures. Clemmer JT; Monti JM; Lechman JB Soft Matter; 2024 Feb; 20(8):1702-1718. PubMed ID: 38284215 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional compaction of soft granular packings. Cárdenas-Barrantes M; Cantor D; Barés J; Renouf M; Azéma E Soft Matter; 2022 Jan; 18(2):312-321. PubMed ID: 34878475 [TBL] [Abstract][Full Text] [Related]
7. The physics of jamming for granular materials: a review. Behringer RP; Chakraborty B Rep Prog Phys; 2019 Jan; 82(1):012601. PubMed ID: 30132446 [TBL] [Abstract][Full Text] [Related]
8. Experimental Investigation and Micromechanical Modeling of Elastoplastic Damage Behavior of Sandstone. Jia C; Zhang Q; Wang S Materials (Basel); 2020 Aug; 13(15):. PubMed ID: 32756343 [TBL] [Abstract][Full Text] [Related]
13. How the ideal jamming point illuminates the world of granular media. Coulais C; Behringer RP; Dauchot O Soft Matter; 2014 Mar; 10(10):1519-36. PubMed ID: 24651534 [TBL] [Abstract][Full Text] [Related]
14. Effect of volume fraction on granular avalanche dynamics. Gravish N; Goldman DI Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032202. PubMed ID: 25314432 [TBL] [Abstract][Full Text] [Related]
15. Microscopic Origins of Shear Jamming for 2D Frictional Grains. Wang D; Ren J; Dijksman JA; Zheng H; Behringer RP Phys Rev Lett; 2018 May; 120(20):208004. PubMed ID: 29864324 [TBL] [Abstract][Full Text] [Related]
16. The influence of grain shape, friction and cohesion on granular compaction dynamics. Vandewalle N; Lumay G; Gerasimov O; Ludewig F Eur Phys J E Soft Matter; 2007 Mar; 22(3):241-8. PubMed ID: 17396218 [TBL] [Abstract][Full Text] [Related]
17. Fluctuations, jamming, and yielding for a driven probe particle in disordered disk assemblies. Olson Reichhardt CJ; Reichhardt C Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051306. PubMed ID: 21230472 [TBL] [Abstract][Full Text] [Related]
18. Numerical simulations of the compaction of assemblies of rubberlike particles: A quantitative comparison with experiments. Vu TL; Barés J; Mora S; Nezamabadi S Phys Rev E; 2019 Jun; 99(6-1):062903. PubMed ID: 31330616 [TBL] [Abstract][Full Text] [Related]
19. Numerical study of stress distribution in sheared granular material in two dimensions. Bardenhagen SG; Brackbill JU; Sulsky D Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):3882-90. PubMed ID: 11088908 [TBL] [Abstract][Full Text] [Related]
20. Jamming transition in emulsions and granular materials. Zhang HP; Makse HA Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011301. PubMed ID: 16089950 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]