These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32501100)

  • 1. Field-Dependent Ionic Conductivities from Generalized Fluctuation-Dissipation Relations.
    Lesnicki D; Gao CY; Rotenberg B; Limmer DT
    Phys Rev Lett; 2020 May; 124(20):206001. PubMed ID: 32501100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the molecular correlations that result in field-dependent conductivities in electrolyte solutions.
    Lesnicki D; Gao CY; Limmer DT; Rotenberg B
    J Chem Phys; 2021 Jul; 155(1):014507. PubMed ID: 34241409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalous Wien Effects in Supercooled Ionic Liquids.
    Patro LN; Burghaus O; Roling B
    Phys Rev Lett; 2016 May; 116(18):185901. PubMed ID: 27203333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge Transport in Water-NaCl Electrolytes with Molecular Dynamics Simulations.
    Gullbrekken Ø; Røe IT; Selbach SM; Schnell SK
    J Phys Chem B; 2023 Mar; 127(12):2729-2738. PubMed ID: 36921121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscopic origins of conductivity in molten salts unraveled by computer simulations.
    Walz MM; van der Spoel D
    Commun Chem; 2021 Jan; 4(1):9. PubMed ID: 36697545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluctuation-enhanced electric conductivity in electrolyte solutions.
    Péraud JP; Nonaka AJ; Bell JB; Donev A; Garcia AL
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):10829-10833. PubMed ID: 28973890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric conductivity in electrolyte solution under external electromagnetic field by nonequilibrium molecular dynamics simulation.
    Yang L; Huang K
    J Phys Chem B; 2010 Jul; 114(25):8449-52. PubMed ID: 20536198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge and electric field fluctuations in aqueous NaCl electrolytes.
    Sellner B; Valiev M; Kathmann SM
    J Phys Chem B; 2013 Sep; 117(37):10869-82. PubMed ID: 23906325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Typical and rare fluctuations in nonlinear driven diffusive systems with dissipation.
    Hurtado PI; Lasanta A; Prados A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022110. PubMed ID: 24032778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic velocities in an ionic liquid under high electric fields using all-atom and coarse-grained force field molecular dynamics.
    Daily JW; Micci MM
    J Chem Phys; 2009 Sep; 131(9):094501. PubMed ID: 19739855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relations between the fractional Stokes-Einstein and Nernst-Einstein equations and velocity correlation coefficients in ionic liquids and molten salts.
    Harris KR
    J Phys Chem B; 2010 Jul; 114(29):9572-7. PubMed ID: 20593760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and dynamics in yttrium-based molten rare earth alkali fluorides.
    Levesque M; Sarou-Kanian V; Salanne M; Gobet M; Groult H; Bessada C; Madden PA; Rollet AL
    J Chem Phys; 2013 May; 138(18):184503. PubMed ID: 23676052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency and field-dependent response of confined electrolytes from Brownian dynamics simulations.
    Hoang Ngoc Minh T; Stoltz G; Rotenberg B
    J Chem Phys; 2023 Mar; 158(10):104103. PubMed ID: 36922117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal conductivity of molten alkali halides: Temperature and density dependence.
    Ohtori N; Oono T; Takase K
    J Chem Phys; 2009 Jan; 130(4):044505. PubMed ID: 19191396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Use of the Angell-Walden Equation To Determine the "Ionicity" of Molten Salts and Ionic Liquids.
    Harris KR
    J Phys Chem B; 2019 Aug; 123(32):7014-7023. PubMed ID: 31318219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge fluctuations in nanoscale capacitors.
    Limmer DT; Merlet C; Salanne M; Chandler D; Madden PA; van Roij R; Rotenberg B
    Phys Rev Lett; 2013 Sep; 111(10):106102. PubMed ID: 25166683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental accessibility of generalized fluctuation-dissipation relations for nonequilibrium steady states.
    Mehl J; Blickle V; Seifert U; Bechinger C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):032401. PubMed ID: 21230123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluctuation Relations for Dissipative Systems in Constant External Magnetic Field: Theory and Molecular Dynamics Simulations.
    Coretti A; Rondoni L; Bonella S
    Entropy (Basel); 2021 Jan; 23(2):. PubMed ID: 33504011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocrystals in Molten Salts and Ionic Liquids: Experimental Observation of Ionic Correlations Extending beyond the Debye Length.
    Kamysbayev V; Srivastava V; Ludwig NB; Borkiewicz OJ; Zhang H; Ilavsky J; Lee B; Chapman KW; Vaikuntanathan S; Talapin DV
    ACS Nano; 2019 May; 13(5):5760-5770. PubMed ID: 30964280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonequilibrium simulations of model ionomers in an oscillating electric field.
    Ting CL; Sorensen-Unruh KE; Stevens MJ; Frischknecht AL
    J Chem Phys; 2016 Jul; 145(4):044902. PubMed ID: 27475392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.