These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32501138)

  • 1. PROSPECT: A web server for predicting protein histidine phosphorylation sites.
    Chen Z; Zhao P; Li F; Leier A; Marquez-Lago TT; Webb GI; Baggag A; Bensmail H; Song J
    J Bioinform Comput Biol; 2020 Aug; 18(4):2050018. PubMed ID: 32501138
    [No Abstract]   [Full Text] [Related]  

  • 2. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SIMLIN: a bioinformatics tool for prediction of S-sulphenylation in the human proteome based on multi-stage ensemble-learning models.
    Wang X; Li C; Li F; Sharma VS; Song J; Webb GI
    BMC Bioinformatics; 2019 Nov; 20(1):602. PubMed ID: 31752668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns.
    Wong YH; Lee TY; Liang HK; Huang CM; Wang TY; Yang YH; Chu CH; Huang HD; Ko MT; Hwang JK
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W588-94. PubMed ID: 17517770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. nhKcr: a new bioinformatics tool for predicting crotonylation sites on human nonhistone proteins based on deep learning.
    Chen YZ; Wang ZZ; Wang Y; Ying G; Chen Z; Song J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34002774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome Bioinformatics Methods for Studying Histidine Phosphorylation.
    Jones AR; Camacho OM
    Methods Mol Biol; 2020; 2077():237-250. PubMed ID: 31707663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome.
    Li F; Li C; Wang M; Webb GI; Zhang Y; Whisstock JC; Song J
    Bioinformatics; 2015 May; 31(9):1411-9. PubMed ID: 25568279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positive-unlabelled learning of glycosylation sites in the human proteome.
    Li F; Zhang Y; Purcell AW; Webb GI; Chou KC; Lithgow T; Li C; Song J
    BMC Bioinformatics; 2019 Mar; 20(1):112. PubMed ID: 30841845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational identification of microbial phosphorylation sites by the enhanced characteristics of sequence information.
    Hasan MM; Rashid MM; Khatun MS; Kurata H
    Sci Rep; 2019 Jun; 9(1):8258. PubMed ID: 31164681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Procleave: Predicting Protease-specific Substrate Cleavage Sites by Combining Sequence and Structural Information.
    Li F; Leier A; Liu Q; Wang Y; Xiang D; Akutsu T; Webb GI; Smith AI; Marquez-Lago T; Li J; Song J
    Genomics Proteomics Bioinformatics; 2020 Feb; 18(1):52-64. PubMed ID: 32413515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ELASPIC2 (EL2): Combining Contextualized Language Models and Graph Neural Networks to Predict Effects of Mutations.
    Strokach A; Lu TY; Kim PM
    J Mol Biol; 2021 May; 433(11):166810. PubMed ID: 33450251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of protein phosphorylation sites by using the composition of k-spaced amino acid pairs.
    Zhao X; Zhang W; Xu X; Ma Z; Yin M
    PLoS One; 2012; 7(10):e46302. PubMed ID: 23110047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational identification of ubiquitination sites in Arabidopsis thaliana using convolutional neural networks.
    Wang X; Yan R; Chen YZ; Wang Y
    Plant Mol Biol; 2021 Apr; 105(6):601-610. PubMed ID: 33527202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting protein residue-residue contacts using random forests and deep networks.
    Luttrell J; Liu T; Zhang C; Wang Z
    BMC Bioinformatics; 2019 Mar; 20(Suppl 2):100. PubMed ID: 30871477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pHisphorylation: the emergence of histidine phosphorylation as a reversible regulatory modification.
    Fuhs SR; Hunter T
    Curr Opin Cell Biol; 2017 Apr; 45():8-16. PubMed ID: 28129587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quokka: a comprehensive tool for rapid and accurate prediction of kinase family-specific phosphorylation sites in the human proteome.
    Li F; Li C; Marquez-Lago TT; Leier A; Akutsu T; Purcell AW; Ian Smith A; Lithgow T; Daly RJ; Song J; Chou KC
    Bioinformatics; 2018 Dec; 34(24):4223-4231. PubMed ID: 29947803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Identification of Protein Pupylation Sites by Using Profile-Based Composition of k-Spaced Amino Acid Pairs.
    Hasan MM; Zhou Y; Lu X; Li J; Song J; Zhang Z
    PLoS One; 2015; 10(6):e0129635. PubMed ID: 26080082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pHisPred: a tool for the identification of histidine phosphorylation sites by integrating amino acid patterns and properties.
    Zhao J; Zhuang M; Liu J; Zhang M; Zeng C; Jiang B; Wu J; Song X
    BMC Bioinformatics; 2022 Sep; 23(Suppl 3):399. PubMed ID: 36171552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pf-Phospho: a machine learning-based phosphorylation sites prediction tool for Plasmodium proteins.
    Gupta P; Venkadesan S; Mohanty D
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35753700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HisPhosSite: A comprehensive database of histidine phosphorylated proteins and sites.
    Zhao J; Zou L; Li Y; Liu X; Zeng C; Xu C; Jiang B; Guo X; Song X
    J Proteomics; 2021 Jul; 243():104262. PubMed ID: 33984507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.