BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 32501508)

  • 1. Different molecular enumeration influences in deep learning: an example using aqueous solubility.
    Chen JH; Tseng YJ
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32501508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate Physical Property Predictions via Deep Learning.
    Hou Y; Wang S; Bai B; Chan HCS; Yuan S
    Molecules; 2022 Mar; 27(5):. PubMed ID: 35268770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning to SMILES: BAN-based strategies to improve latent representation learning from molecules.
    Wu CK; Zhang XC; Yang ZJ; Lu AP; Hou TJ; Cao DS
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34427296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A general optimization protocol for molecular property prediction using a deep learning network.
    Chen JH; Tseng YJ
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34498673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSAR modeling without descriptors using graph convolutional neural networks: the case of mutagenicity prediction.
    Hung C; Gini G
    Mol Divers; 2021 Aug; 25(3):1283-1299. PubMed ID: 34146224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De Novo Molecule Design by Translating from Reduced Graphs to SMILES.
    Pogány P; Arad N; Genway S; Pickett SD
    J Chem Inf Model; 2019 Mar; 59(3):1136-1146. PubMed ID: 30525594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TopP-S: Persistent homology-based multi-task deep neural networks for simultaneous predictions of partition coefficient and aqueous solubility.
    Wu K; Zhao Z; Wang R; Wei GW
    J Comput Chem; 2018 Jul; 39(20):1444-1454. PubMed ID: 29633287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MvMRL: a multi-view molecular representation learning method for molecular property prediction.
    Zhang R; Lin Y; Wu Y; Deng L; Zhang H; Liao M; Peng Y
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38920342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SolPredictor: Predicting Solubility with Residual Gated Graph Neural Network.
    Ahmad W; Tayara H; Shim H; Chong KT
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38255790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convolutional neural network based on SMILES representation of compounds for detecting chemical motif.
    Hirohara M; Saito Y; Koda Y; Sato K; Sakakibara Y
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):526. PubMed ID: 30598075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement in ADMET Prediction with Multitask Deep Featurization.
    Feinberg EN; Joshi E; Pande VS; Cheng AC
    J Med Chem; 2020 Aug; 63(16):8835-8848. PubMed ID: 32286824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attention-Based Graph Neural Network for Molecular Solubility Prediction.
    Ahmad W; Tayara H; Chong KT
    ACS Omega; 2023 Jan; 8(3):3236-3244. PubMed ID: 36713733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying Structure-Property Relationships through SMILES Syntax Analysis with Self-Attention Mechanism.
    Zheng S; Yan X; Yang Y; Xu J
    J Chem Inf Model; 2019 Feb; 59(2):914-923. PubMed ID: 30669836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Deep Learning Architectures for Aqueous Solubility Prediction.
    Panapitiya G; Girard M; Hollas A; Sepulveda J; Murugesan V; Wang W; Saldanha E
    ACS Omega; 2022 May; 7(18):15695-15710. PubMed ID: 35571767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. End-to-End Representation Learning for Chemical-Chemical Interaction Prediction.
    Kwon S; Yoon S
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1436-1447. PubMed ID: 30106687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blinded Predictions and Post Hoc Analysis of the Second Solubility Challenge Data: Exploring Training Data and Feature Set Selection for Machine and Deep Learning Models.
    Conn JGM; Carter JW; Conn JJA; Subramanian V; Baxter A; Engkvist O; Llinas A; Ratkova EL; Pickett SD; McDonagh JL; Palmer DS
    J Chem Inf Model; 2023 Feb; 63(4):1099-1113. PubMed ID: 36758178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SMILES to Smell: Decoding the Structure-Odor Relationship of Chemical Compounds Using the Deep Neural Network Approach.
    Sharma A; Kumar R; Ranjta S; Varadwaj PK
    J Chem Inf Model; 2021 Feb; 61(2):676-688. PubMed ID: 33449694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving Chemical Autoencoder Latent Space and Molecular
    Bjerrum EJ; Sattarov B
    Biomolecules; 2018 Oct; 8(4):. PubMed ID: 30380783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward Explainable Anticancer Compound Sensitivity Prediction via Multimodal Attention-Based Convolutional Encoders.
    Manica M; Oskooei A; Born J; Subramanian V; Sáez-Rodríguez J; Rodríguez Martínez M
    Mol Pharm; 2019 Dec; 16(12):4797-4806. PubMed ID: 31618586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The power of deep learning to ligand-based novel drug discovery.
    Baskin II
    Expert Opin Drug Discov; 2020 Jul; 15(7):755-764. PubMed ID: 32228116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.