BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32501570)

  • 1. An NMR-Based Biosensor to Measure Stereospecific Methionine Sulfoxide Reductase Activities in Vitro and in Vivo*.
    Sánchez-López C; Labadie N; Lombardo VA; Biglione FA; Manta B; Jacob RS; Gladyshev VN; Abdelilah-Seyfried S; Selenko P; Binolfi A
    Chemistry; 2020 Nov; 26(65):14838-14843. PubMed ID: 32501570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring of Methionine Sulfoxide Content and Methionine Sulfoxide Reductase Activity.
    Tarrago L; Oheix E; Péterfi Z; Gladyshev VN
    Methods Mol Biol; 2018; 1661():285-299. PubMed ID: 28917052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The methionine sulfoxide reduction system: selenium utilization and methionine sulfoxide reductase enzymes and their functions.
    Kim HY
    Antioxid Redox Signal; 2013 Sep; 19(9):958-69. PubMed ID: 23198996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The discovery of methionine sulfoxide reductase enzymes: An historical account and future perspectives.
    Achilli C; Ciana A; Minetti G
    Biofactors; 2015 May; 41(3):135-52. PubMed ID: 25963551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional comparison of methionine sulphoxide reductase A and B in Corynebacterium glutamicum.
    Si M; Feng Y; Chen K; Kang Y; Chen C; Wang Y; Shen X
    J Gen Appl Microbiol; 2017 Nov; 63(5):280-286. PubMed ID: 28904252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methionine sulfoxide reductase A is a stereospecific methionine oxidase.
    Lim JC; You Z; Kim G; Levine RL
    Proc Natl Acad Sci U S A; 2011 Jun; 108(26):10472-7. PubMed ID: 21670260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methionine sulfoxide reductase B from
    Tossounian MA; Khanh Truong AC; Buts L; Wahni K; Mourenza Á; Leermakers M; Vertommen D; Mateos LM; Volkov AN; Messens J
    J Biol Chem; 2020 Mar; 295(11):3664-3677. PubMed ID: 31992594
    [No Abstract]   [Full Text] [Related]  

  • 8.
    Tarrago L; Grosse S; Siponen MI; Lemaire D; Alonso B; Miotello G; Armengaud J; Arnoux P; Pignol D; Sabaty M
    Biochem J; 2018 Dec; 475(23):3779-3795. PubMed ID: 30389844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes.
    Hage H; Rosso MN; Tarrago L
    Free Radic Biol Med; 2021 Jun; 169():187-215. PubMed ID: 33865960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methionine sulfoxide reductases and virulence of bacterial pathogens.
    Sasindran SJ; Saikolappan S; Dhandayuthapani S
    Future Microbiol; 2007 Dec; 2(6):619-30. PubMed ID: 18041903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling the specificities of the different human methionine sulfoxide reductases.
    Vandermarliere E; Ghesquière B; Jonckheere V; Gevaert K; Martens L
    Proteomics; 2014 Sep; 14(17-18):1990-8. PubMed ID: 24737740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteome alteration in oxidative stress-sensitive methionine sulfoxide reductase-silenced HEK293 cells.
    Ugarte N; Ladouce R; Radjei S; Gareil M; Friguet B; Petropoulos I
    Free Radic Biol Med; 2013 Dec; 65():1023-1036. PubMed ID: 23988788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of methionine/selenomethionine oxidation and methionine sulfoxide reductase function using methionine-rich proteins and antibodies against their oxidized forms.
    Le DT; Liang X; Fomenko DE; Raza AS; Chong CK; Carlson BA; Hatfield DL; Gladyshev VN
    Biochemistry; 2008 Jun; 47(25):6685-94. PubMed ID: 18505275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolving oxidative damage to methionine by an unexpected membrane-associated stereoselective reductase discovered using chiral fluorescent probes.
    Makukhin N; Havelka V; Poláchová E; Rampírová P; Tarallo V; Strisovsky K; Míšek J
    FEBS J; 2019 Oct; 286(20):4024-4035. PubMed ID: 31166082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methionine sulfoxide reductases and cholesterol transporter STARD3 constitute an efficient system for detoxification of cholesterol hydroperoxides.
    Lim JM; Sabbasani VR; Swenson RE; Levine RL
    J Biol Chem; 2023 Sep; 299(9):105099. PubMed ID: 37507014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The methionine sulfoxide reductases: Catalysis and substrate specificities.
    Boschi-Muller S; Gand A; Branlant G
    Arch Biochem Biophys; 2008 Jun; 474(2):266-73. PubMed ID: 18302927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosensor-Linked Immunosorbent Assay for the Quantification of Methionine Oxidation in Target Proteins.
    Lee HM; Choi DW; Kim S; Lee A; Kim M; Roh YJ; Jo YH; Cho HY; Lee HJ; Lee SR; Tarrago L; Gladyshev VN; Kim JH; Lee BC
    ACS Sens; 2022 Jan; 7(1):131-141. PubMed ID: 34936330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase.
    Kumar RA; Koc A; Cerny RL; Gladyshev VN
    J Biol Chem; 2002 Oct; 277(40):37527-35. PubMed ID: 12145281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-affinity and cooperative binding of oxidized calmodulin by methionine sulfoxide reductase.
    Xiong Y; Chen B; Smallwood HS; Urbauer RJ; Markille LM; Galeva N; Williams TD; Squier TC
    Biochemistry; 2006 Dec; 45(49):14642-54. PubMed ID: 17144657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for methionine-sulfoxide-reductase gene transfer from Alphaproteobacteria to the transcriptionally active (macro)nucleus of the ciliate, Euplotes raikovi.
    Dobri N; Candelori A; Ricci F; Luporini P; Vallesi A
    BMC Microbiol; 2014 Nov; 14():288. PubMed ID: 25420622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.