BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32501675)

  • 1. Hourglass-Shaped Microfibers.
    Shi R; Tian Y; Zhu P; Tang X; Tian X; Zhou C; Wang L
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29747-29756. PubMed ID: 32501675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Fabrication of Bioinspired Cavity-Microfibers for 3D Scaffolds.
    Tian Y; Wang J; Wang L
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29219-29226. PubMed ID: 30113807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Fabrication of Bio-Inspired Microfibers with Controllable Magnetic Spindle-Knots for 3D Assembly and Water Collection.
    He XH; Wang W; Liu YM; Jiang MY; Wu F; Deng K; Liu Z; Ju XJ; Xie R; Chu LY
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17471-81. PubMed ID: 26192108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired Multifunctional Spindle-Knotted Microfibers from Microfluidics.
    Shang L; Fu F; Cheng Y; Yu Y; Wang J; Gu Z; Zhao Y
    Small; 2017 Jan; 13(4):. PubMed ID: 27071374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water Harvesting of Bioinspired Microfibers with Rough Spindle-Knots from Microfluidics.
    Liu Y; Yang N; Li X; Li J; Pei W; Xu Y; Hou Y; Zheng Y
    Small; 2020 Mar; 16(9):e1901819. PubMed ID: 31379136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic Generation of Bioinspired Spindle-knotted Graphene Microfibers for Oil Absorption.
    Wu Z; Wang J; Zhao Z; Yu Y; Shang L; Zhao Y
    Chemphyschem; 2018 Aug; 19(16):1990-1994. PubMed ID: 28929611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale water collection of bioinspired cavity-microfibers.
    Tian Y; Zhu P; Tang X; Zhou C; Wang J; Kong T; Xu M; Wang L
    Nat Commun; 2017 Oct; 8(1):1080. PubMed ID: 29057877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing highly structured polycaprolactone fibers using microfluidics.
    Sharifi F; Kurteshi D; Hashemi N
    J Mech Behav Biomed Mater; 2016 Aug; 61():530-540. PubMed ID: 27136089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmable Knot Microfibers from Piezoelectric Microfluidics.
    Yang C; Yu Y; Wang X; Shang L; Zhao Y
    Small; 2022 Feb; 18(5):e2104309. PubMed ID: 34825481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composite ECM-alginate microfibers produced by microfluidics as scaffolds with biomineralization potential.
    Angelozzi M; Miotto M; Penolazzi L; Mazzitelli S; Keane T; Badylak SF; Piva R; Nastruzzi C
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():141-53. PubMed ID: 26249575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of capillary microfluidics for spinning cell-laden microfibers.
    Yu Y; Shang L; Guo J; Wang J; Zhao Y
    Nat Protoc; 2018 Nov; 13(11):2557-2579. PubMed ID: 30353174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidics-Based Fabrication of Cell-Laden Hydrogel Microfibers for Potential Applications in Tissue Engineering.
    Wang G; Jia L; Han F; Wang J; Yu L; Yu Y; Turnbull G; Guo M; Shu W; Li B
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31027249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfiber Fabricated via Microfluidic Spinning toward Tissue Engineering Applications.
    Tian L; Ma J; Li W; Zhang X; Gao X
    Macromol Biosci; 2023 Mar; 23(3):e2200429. PubMed ID: 36543751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [One-step generation of droplet-filled hydrogel microfibers for 3D cell culture using an all-aqueous microfluidic system].
    Zhao MQ; Liu HT; Zhang X; Gan ZQ; Qin JH
    Se Pu; 2023 Sep; 41(9):742-751. PubMed ID: 37712538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic strategy to fabricate ultra-thin polyelectrolyte hollow microfibers as 3D cellular carriers.
    Liu H; Wang Y; Chen W; Yu Y; Jiang L; Qin J
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109705. PubMed ID: 31499950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple Spinning of Heterogeneous Hollow Microfibers on Chip.
    Yu Y; Wei W; Wang Y; Xu C; Guo Y; Qin J
    Adv Mater; 2016 Aug; 28(31):6649-55. PubMed ID: 27185309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Fabrication of Bioactive Microfibers for Creating Tissue Constructs Using Microfluidic Techniques.
    Cheng Y; Yu Y; Fu F; Wang J; Shang L; Gu Z; Zhao Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1080-6. PubMed ID: 26741731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Necklace-Like Microfibers with Variable Knots and Perfusable Channels Fabricated by an Oil-Free Microfluidic Spinning Process.
    Xie R; Xu P; Liu Y; Li L; Luo G; Ding M; Liang Q
    Adv Mater; 2018 Apr; 30(14):e1705082. PubMed ID: 29484717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering.
    Hwang CM; Khademhosseini A; Park Y; Sun K; Lee SH
    Langmuir; 2008 Jun; 24(13):6845-51. PubMed ID: 18512874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric Field-Induced Cutting of Hydrogel Microfibers with Precise Length Control for Micromotors and Building Blocks.
    Deng X; Ren Y; Hou L; Liu W; Jia Y; Jiang H
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40228-40237. PubMed ID: 30362341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.