These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 32501678)
21. Tailoring protease-sensitive photodynamic agents to specific disease-associated enzymes. Gabriel D; Campo MA; Gurny R; Lange N Bioconjug Chem; 2007; 18(4):1070-7. PubMed ID: 17477499 [TBL] [Abstract][Full Text] [Related]
22. Organic small molecular nanoparticles based on self-assembly of amphiphilic fluoroporphyrins for photodynamic and photothermal synergistic cancer therapy. Yang L; Li H; Liu D; Su H; Wang K; Liu G; Luo X; Wu F Colloids Surf B Biointerfaces; 2019 Oct; 182():110345. PubMed ID: 31299540 [TBL] [Abstract][Full Text] [Related]
23. Self-destructive PEG-BODIPY nanomaterials for photodynamic and photothermal therapy. Li C; Lin W; Liu S; Zhang W; Xie Z J Mater Chem B; 2019 Jul; 7(30):4655-4660. PubMed ID: 31364670 [TBL] [Abstract][Full Text] [Related]
24. Light-triggered dual-modality drug release of self-assembled prodrug-nanoparticles for synergistic photodynamic and hypoxia-activated therapy. Zhao D; Tao W; Li S; Li L; Sun Y; Li G; Wang G; Wang Y; Lin B; Luo C; Wang Y; Cheng M; He Z; Sun J Nanoscale Horiz; 2020 May; 5(5):886-894. PubMed ID: 32219262 [TBL] [Abstract][Full Text] [Related]
25. Self-Delivered and Self-Monitored Chemo-Photodynamic Nanoparticles with Light-Triggered Synergistic Antitumor Therapies by Downregulation of HIF-1α and Depletion of GSH. Zhang Z; Wang R; Huang X; Luo R; Xue J; Gao J; Liu W; Liu F; Feng F; Qu W ACS Appl Mater Interfaces; 2020 Feb; 12(5):5680-5694. PubMed ID: 31944660 [TBL] [Abstract][Full Text] [Related]
26. Polyelectrolyte nanocomplex formation of heparin-photosensitizer conjugate with polymeric scavenger for photodynamic therapy. Li L; Cho H; Kim S; Kang HC; Huh KM Carbohydr Polym; 2015 May; 121():122-31. PubMed ID: 25659680 [TBL] [Abstract][Full Text] [Related]
27. Reactive Oxygen Species-Responsive Nanoparticles Based on PEGlated Prodrug for Targeted Treatment of Oral Tongue Squamous Cell Carcinoma by Combining Photodynamic Therapy and Chemotherapy. Shi S; Zhang L; Zhu M; Wan G; Li C; Zhang J; Wang Y; Wang Y ACS Appl Mater Interfaces; 2018 Sep; 10(35):29260-29272. PubMed ID: 30106279 [TBL] [Abstract][Full Text] [Related]
28. Development of redox-responsive theranostic nanoparticles for near-infrared fluorescence imaging-guided photodynamic/chemotherapy of tumor. Yang X; Shi X; Ji J; Zhai G Drug Deliv; 2018 Nov; 25(1):780-796. PubMed ID: 29542333 [TBL] [Abstract][Full Text] [Related]
29. ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered locoregional chemotherapy. Pei P; Sun C; Tao W; Li J; Yang X; Wang J Biomaterials; 2019 Jan; 188():74-82. PubMed ID: 30336287 [TBL] [Abstract][Full Text] [Related]
30. Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. Lee SJ; Koo H; Jeong H; Huh MS; Choi Y; Jeong SY; Byun Y; Choi K; Kim K; Kwon IC J Control Release; 2011 May; 152(1):21-9. PubMed ID: 21457740 [TBL] [Abstract][Full Text] [Related]
31. Water-Soluble, Zwitterionic Poly-photosensitizers as Carrier-Free, Photosensitizer-Self-Delivery System for in Vivo Photodynamic Therapy. Zheng N; Xie D; Wang C; Zhang Z; Zheng Y; Lu Q; Bai Y; Li Y; Wang A; Song W ACS Appl Mater Interfaces; 2019 Nov; 11(47):44007-44017. PubMed ID: 31696699 [TBL] [Abstract][Full Text] [Related]
32. In Vivo Near-Infrared Photodynamic Therapy Based on Targeted Upconversion Nanoparticles. Zhou A; Wei Y; Chen Q; Xing D J Biomed Nanotechnol; 2015 Nov; 11(11):2003-10. PubMed ID: 26554158 [TBL] [Abstract][Full Text] [Related]
33. Tumor Microenvironment ROS/pH Cascade-Responsive Supramolecular Nanoplatform with ROS Regeneration Property for Enhanced Hepatocellular Carcinoma Therapy. Shi J; Wang Y; Wu Y; Li J; Fu C; Li Y; Xie X; Fan X; Hu Y; Hu C; Zhang J ACS Appl Mater Interfaces; 2024 Feb; 16(6):7576-7592. PubMed ID: 38316581 [TBL] [Abstract][Full Text] [Related]
34. Highly-controllable drug release from core cross-linked singlet oxygen-responsive nanoparticles for cancer therapy. Zhou J; Sun C; Yu C RSC Adv; 2020 May; 10(34):19997-20008. PubMed ID: 35520443 [TBL] [Abstract][Full Text] [Related]
35. Rhamnolipid nanoparticles for in vivo drug delivery and photodynamic therapy. Yi G; Son J; Yoo J; Park C; Koo H Nanomedicine; 2019 Jul; 19():12-21. PubMed ID: 30981820 [TBL] [Abstract][Full Text] [Related]
36. Self-quenching synthesis of coordination polymer pre-drug nanoparticles for selective photodynamic therapy. Song Y; Li Y; Zhang Y; Wang L; Xie Z J Mater Chem B; 2019 Dec; 7(48):7776-7782. PubMed ID: 31754677 [TBL] [Abstract][Full Text] [Related]
37. Gold-chlorophyll a-hybrid nanoparticles and chlorophyll a/cetyltrimethylammonium chloride self-assembled-suprastructures as novel carriers for chlorophyll a delivery in water medium: Photoactivity and photostability. Rizzi V; Vurro D; Placido T; Fini P; Petrella A; Semeraro P; Cosma P Colloids Surf B Biointerfaces; 2018 Jan; 161():555-562. PubMed ID: 29145103 [TBL] [Abstract][Full Text] [Related]
38. A Light Responsive Nanoparticle-Based Delivery System Using Pheophorbide A Graft Polyethylenimine for Dendritic Cell-Based Cancer Immunotherapy. Zhang C; Zhang J; Shi G; Song H; Shi S; Zhang X; Huang P; Wang Z; Wang W; Wang C; Kong D; Li C Mol Pharm; 2017 May; 14(5):1760-1770. PubMed ID: 28296410 [TBL] [Abstract][Full Text] [Related]
39. Light-activated drug release from a hyaluronic acid targeted nanoconjugate for cancer therapy. Sun CY; Zhang BB; Zhou JY J Mater Chem B; 2019 Aug; 7(31):4843-4853. PubMed ID: 31389968 [TBL] [Abstract][Full Text] [Related]
40. ROS-sensitive biomimetic nanocarriers modulate tumor hypoxia for synergistic photodynamic chemotherapy. Liu H; Jiang W; Wang Q; Hang L; Wang Y; Wang Y Biomater Sci; 2019 Aug; 7(9):3706-3716. PubMed ID: 31187794 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]