These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32501689)

  • 41. Protein-ligand binding residue prediction enhancement through hybrid deep heterogeneous learning of sequence and structure data.
    Xia CQ; Pan X; Shen HB
    Bioinformatics; 2020 May; 36(10):3018-3027. PubMed ID: 32091580
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An improved deep learning method for predicting DNA-binding proteins based on contextual features in amino acid sequences.
    Hu S; Ma R; Wang H
    PLoS One; 2019; 14(11):e0225317. PubMed ID: 31725778
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deep Learning-Based Stroke Disease Prediction System Using Real-Time Bio Signals.
    Choi YA; Park SJ; Jun JA; Pyo CS; Cho KH; Lee HS; Yu JH
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206540
    [TBL] [Abstract][Full Text] [Related]  

  • 44. AAPred-CNN: Accurate predictor based on deep convolution neural network for identification of anti-angiogenic peptides.
    Lin C; Wang L; Shi L
    Methods; 2022 Aug; 204():442-448. PubMed ID: 35031486
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DeepTP: A Deep Learning Model for Thermophilic Protein Prediction.
    Zhao J; Yan W; Yang Y
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768540
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Combinatorial feature embedding based on CNN and LSTM for biomedical named entity recognition.
    Cho M; Ha J; Park C; Park S
    J Biomed Inform; 2020 Mar; 103():103381. PubMed ID: 32004641
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Discovering nuclear targeting signal sequence through protein language learning and multivariate analysis.
    Guo Y; Yang Y; Huang Y; Shen HB
    Anal Biochem; 2020 Feb; 591():113565. PubMed ID: 31883904
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Scene Text Recognition Based on Bidirectional LSTM and Deep Neural Network.
    Kantipudi MP; Kumar S; Kumar Jha A
    Comput Intell Neurosci; 2021; 2021():2676780. PubMed ID: 34858492
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Deep Learning Approach for Predicting Antigenic Variation of Influenza A H3N2.
    Xia YL; Li W; Li Y; Ji XL; Fu YX; Liu SQ
    Comput Math Methods Med; 2021; 2021():9997669. PubMed ID: 34697557
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.
    Nielsen H; Engelbrecht J; Brunak S; von Heijne G
    Int J Neural Syst; 1997; 8(5-6):581-99. PubMed ID: 10065837
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Transfer-Learning-Based Deep Convolutional Neural Network for Predicting Leukemia-Related Phosphorylation Sites from Protein Primary Sequences.
    He J; Wu Y; Pu X; Li M; Guo Y
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163663
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ToxDL: deep learning using primary structure and domain embeddings for assessing protein toxicity.
    Pan X; Zuallaert J; Wang X; Shen HB; Campos EP; Marushchak DO; De Neve W
    Bioinformatics; 2021 Jan; 36(21):5159-5168. PubMed ID: 32692832
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RBPsuite: RNA-protein binding sites prediction suite based on deep learning.
    Pan X; Fang Y; Li X; Yang Y; Shen HB
    BMC Genomics; 2020 Dec; 21(1):884. PubMed ID: 33297946
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DEEPSMP: A deep learning model for predicting the ectodomain shedding events of membrane proteins.
    Cao Z; Du W; Li G; Cao H
    J Bioinform Comput Biol; 2020 Jun; 18(3):2050017. PubMed ID: 32576054
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Time-Frequency Mask-Aware Bidirectional LSTM: A Deep Learning Approach for Underwater Acoustic Signal Separation.
    Chen J; Liu C; Xie J; An J; Huang N
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898099
    [TBL] [Abstract][Full Text] [Related]  

  • 57. LSTM-TCN: dissolved oxygen prediction in aquaculture, based on combined model of long short-term memory network and temporal convolutional network.
    Li W; Wei Y; An D; Jiao Y; Wei Q
    Environ Sci Pollut Res Int; 2022 Jun; 29(26):39545-39556. PubMed ID: 35103942
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improving DNA-Binding Protein Prediction Using Three-Part Sequence-Order Feature Extraction and a Deep Neural Network Algorithm.
    Hu J; Zeng WW; Jia NX; Arif M; Yu DJ; Zhang GJ
    J Chem Inf Model; 2023 Feb; 63(3):1044-1057. PubMed ID: 36719781
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DeepLBCEPred: A Bi-LSTM and multi-scale CNN-based deep learning method for predicting linear B-cell epitopes.
    Qi Y; Zheng P; Huang G
    Front Microbiol; 2023; 14():1117027. PubMed ID: 36910218
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DeepSTF: predicting transcription factor binding sites by interpretable deep neural networks combining sequence and shape.
    Ding P; Wang Y; Zhang X; Gao X; Liu G; Yu B
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37328639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.