BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 32501710)

  • 1. Post-Thaw Culture and Measurement of Total Cell Recovery Is Crucial in the Evaluation of New Macromolecular Cryoprotectants.
    Murray KA; Gibson MI
    Biomacromolecules; 2020 Jul; 21(7):2864-2873. PubMed ID: 32501710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyampholytes as Emerging Macromolecular Cryoprotectants.
    Stubbs C; Bailey TL; Murray K; Gibson MI
    Biomacromolecules; 2020 Jan; 21(1):7-17. PubMed ID: 31418266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryopreservation of Liver-Cell Spheroids with Macromolecular Cryoprotectants.
    Bissoyi A; Tomás RMF; Gao Y; Guo Q; Gibson MI
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):2630-2638. PubMed ID: 36621888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red Blood Cell Cryopreservation with Minimal Post-Thaw Lysis Enabled by a Synergistic Combination of a Cryoprotecting Polyampholyte with DMSO/Trehalose.
    Murray A; Congdon TR; Tomás RMF; Kilbride P; Gibson MI
    Biomacromolecules; 2022 Feb; 23(2):467-477. PubMed ID: 34097399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradable Polyampholytes from Radical Ring-Opening Copolymerization Enhance Cellular Cryopreservation.
    Pesenti T; Zhu C; Gonzalez-Martinez N; Tomás RMF; Gibson MI; Nicolas J
    ACS Macro Lett; 2022 Jul; 11(7):889-894. PubMed ID: 35766585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular Antifreeze Protein Significantly Enhances the Cryopreservation of Cell Monolayers.
    Tomás RMF; Bailey TL; Hasan M; Gibson MI
    Biomacromolecules; 2019 Oct; 20(10):3864-3872. PubMed ID: 31498594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Poly(2-(methylsulfinyl)ethyl methacrylate) via Oxidation of Poly(2-(methylthio)ethyl methacrylate): Evaluation of the Sulfoxide Side Chain on Cryopreservation.
    Ishibe T; Gonzalez-Martinez N; Georgiou PG; Murray KA; Gibson MI
    ACS Polym Au; 2022 Dec; 2(6):449-457. PubMed ID: 36536886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetically Scalable Poly(ampholyte) Which Dramatically Enhances Cellular Cryopreservation.
    Bailey TL; Stubbs C; Murray K; Tomás RMF; Otten L; Gibson MI
    Biomacromolecules; 2019 Aug; 20(8):3104-3114. PubMed ID: 31268698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of post-thaw sperm survivals using liquid nitrogen vapor in a spermcasting oyster Ostrea angasi.
    Hassan MM; Li X; Qin JG
    Cryobiology; 2017 Oct; 78():1-7. PubMed ID: 28803845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical approaches to cryopreservation.
    Murray KA; Gibson MI
    Nat Rev Chem; 2022 Aug; 6(8):579-593. PubMed ID: 37118007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the freezing responses of T cells and other subsets of human peripheral blood mononuclear cells using DSMO-free cryoprotectants.
    Pi CH; Hornberger K; Dosa P; Hubel A
    Cytotherapy; 2020 May; 22(5):291-300. PubMed ID: 32220549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of Polymer-Mediated Cryopreservation Using Poly(methyl glycidyl sulfoxide).
    Burkey AA; Hillsley A; Harris DT; Baltzegar JR; Zhang DY; Sprague WW; Rosales AM; Lynd NA
    Biomacromolecules; 2020 Aug; 21(8):3047-3055. PubMed ID: 32649830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimethyl Sulfoxide-Free Cryopreservation of Chondrocytes Based on Zwitterionic Molecule and Polymers.
    Liu M; Zhang X; Guo H; Zhu Y; Wen C; Sui X; Yang J; Zhang L
    Biomacromolecules; 2019 Oct; 20(10):3980-3988. PubMed ID: 31490670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bioinspired and chemically defined alternative to dimethyl sulfoxide for the cryopreservation of human hematopoietic stem cells.
    Gilfanova R; Callegari A; Childs A; Yang G; Luarca M; Gutierrez AG; Medina KI; Mai J; Hui A; Kline M; Wei X; Norris PJ; Muench MO
    Bone Marrow Transplant; 2021 Nov; 56(11):2644-2650. PubMed ID: 34155359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening of Hydrophilic Polymers Reveals Broad Activity in Protecting Phages during Cryopreservation.
    Marton HL; Bhatt A; Sagona AP; Kilbride P; Gibson MI
    Biomacromolecules; 2024 Jan; 25(1):413-424. PubMed ID: 38124388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Successful expansion and cryopreservation of human natural killer cell line NK-92 for clinical manufacturing.
    Lee S; Joo Y; Lee EJ; Byeon Y; Kim JH; Pyo KH; Kim YS; Lim SM; Kilbride P; Iyer RK; Li M; French MC; Lee JY; Kang J; Byun H; Cho BC
    PLoS One; 2024; 19(2):e0294857. PubMed ID: 38394177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of cryoprotectant and cooling rate for sperm cryopreservation in the euryhaline fish medaka Oryzias latipes.
    Yang H; Norris M; Winn R; Tiersch TR
    Cryobiology; 2010 Oct; 61(2):211-9. PubMed ID: 20654608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular cryoprotectants for the preservation of mammalian cell culture: lessons from crowding, overview and perspectives.
    Gore M; Narvekar A; Bhagwat A; Jain R; Dandekar P
    J Mater Chem B; 2022 Jan; 10(2):143-169. PubMed ID: 34913462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the antifreeze protein from the arctic yeast Leucosporidium sp. AY30 on cryopreservation of the marine diatom Phaeodactylum tricornutum.
    Koh HY; Lee JH; Han SJ; Park H; Lee SG
    Appl Biochem Biotechnol; 2015 Jan; 175(2):677-86. PubMed ID: 25342270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cnidarian Cell Cryopreservation: A Powerful Tool for Cultivation and Functional Assays.
    Fricano C; Röttinger E; Furla P; Barnay-Verdier S
    Cells; 2020 Nov; 9(12):. PubMed ID: 33256018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.