These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
436 related articles for article (PubMed ID: 32502143)
21. BRIE: transcriptome-wide splicing quantification in single cells. Huang Y; Sanguinetti G Genome Biol; 2017 Jun; 18(1):123. PubMed ID: 28655331 [TBL] [Abstract][Full Text] [Related]
22. Cell-level somatic mutation detection from single-cell RNA sequencing. Vu TN; Nguyen HN; Calza S; Kalari KR; Wang L; Pawitan Y Bioinformatics; 2019 Nov; 35(22):4679-4687. PubMed ID: 31028395 [TBL] [Abstract][Full Text] [Related]
23. Alternative Splicing Signatures in RNA-seq Data: Percent Spliced in (PSI). Schafer S; Miao K; Benson CC; Heinig M; Cook SA; Hubner N Curr Protoc Hum Genet; 2015 Oct; 87():11.16.1-11.16.14. PubMed ID: 26439713 [TBL] [Abstract][Full Text] [Related]
24. Single-Cell Capture, RNA-seq, and Transcriptome Analysis from the Neural Retina. Dharmat R; Kim S; Li Y; Chen R Methods Mol Biol; 2020; 2092():159-186. PubMed ID: 31786788 [TBL] [Abstract][Full Text] [Related]
25. scReQTL: an approach to correlate SNVs to gene expression from individual scRNA-seq datasets. Liu H; Prashant NM; Spurr LF; Bousounis P; Alomran N; Ibeawuchi H; Sein J; Słowiński P; Tsaneva-Atanasova K; Horvath A BMC Genomics; 2021 Jan; 22(1):40. PubMed ID: 33419390 [TBL] [Abstract][Full Text] [Related]
26. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones. Müller S; Cho A; Liu SJ; Lim DA; Diaz A Bioinformatics; 2018 Sep; 34(18):3217-3219. PubMed ID: 29897414 [TBL] [Abstract][Full Text] [Related]
27. Identifying differentially spliced genes from two groups of RNA-seq samples. Wang W; Qin Z; Feng Z; Wang X; Zhang X Gene; 2013 Apr; 518(1):164-70. PubMed ID: 23228854 [TBL] [Abstract][Full Text] [Related]
28. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data. Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318 [TBL] [Abstract][Full Text] [Related]
29. Analysis of Technical and Biological Variability in Single-Cell RNA Sequencing. Kim B; Lee E; Kim JK Methods Mol Biol; 2019; 1935():25-43. PubMed ID: 30758818 [TBL] [Abstract][Full Text] [Related]
30. Random forest based similarity learning for single cell RNA sequencing data. Pouyan MB; Kostka D Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006 [TBL] [Abstract][Full Text] [Related]
31. Single-cell RNA-seq denoising using a deep count autoencoder. Eraslan G; Simon LM; Mircea M; Mueller NS; Theis FJ Nat Commun; 2019 Jan; 10(1):390. PubMed ID: 30674886 [TBL] [Abstract][Full Text] [Related]
32. scHinter: imputing dropout events for single-cell RNA-seq data with limited sample size. Ye P; Ye W; Ye C; Li S; Ye L; Ji G; Wu X Bioinformatics; 2020 Feb; 36(3):789-797. PubMed ID: 31392316 [TBL] [Abstract][Full Text] [Related]
34. zUMIs - A fast and flexible pipeline to process RNA sequencing data with UMIs. Parekh S; Ziegenhain C; Vieth B; Enard W; Hellmann I Gigascience; 2018 Jun; 7(6):. PubMed ID: 29846586 [TBL] [Abstract][Full Text] [Related]
35. Improving RNA-Seq expression estimation by modeling isoform- and exon-specific read sequencing rate. Liu X; Shi X; Chen C; Zhang L BMC Bioinformatics; 2015 Oct; 16():332. PubMed ID: 26475308 [TBL] [Abstract][Full Text] [Related]