These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
436 related articles for article (PubMed ID: 32502143)
41. scDoc: correcting drop-out events in single-cell RNA-seq data. Ran D; Zhang S; Lytal N; An L Bioinformatics; 2020 Aug; 36(15):4233-4239. PubMed ID: 32365169 [TBL] [Abstract][Full Text] [Related]
42. ZIAQ: a quantile regression method for differential expression analysis of single-cell RNA-seq data. Zhang W; Wei Y; Zhang D; Xu EY Bioinformatics; 2020 May; 36(10):3124-3130. PubMed ID: 32053182 [TBL] [Abstract][Full Text] [Related]
43. Modelling capture efficiency of single-cell RNA-sequencing data improves inference of transcriptome-wide burst kinetics. Tang W; Jørgensen ACS; Marguerat S; Thomas P; Shahrezaei V Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37354494 [TBL] [Abstract][Full Text] [Related]
44. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge. Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988 [TBL] [Abstract][Full Text] [Related]
45. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data. Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805 [TBL] [Abstract][Full Text] [Related]
46. A flexible network-based imputing-and-fusing approach towards the identification of cell types from single-cell RNA-seq data. Qi Y; Guo Y; Jiao H; Shang X BMC Bioinformatics; 2020 Jun; 21(1):240. PubMed ID: 32527285 [TBL] [Abstract][Full Text] [Related]
47. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data. Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606 [TBL] [Abstract][Full Text] [Related]
48. Identifying differential alternative splicing events from RNA sequencing data using RNASeq-MATS. Park JW; Tokheim C; Shen S; Xing Y Methods Mol Biol; 2013; 1038():171-9. PubMed ID: 23872975 [TBL] [Abstract][Full Text] [Related]
49. ARH-seq: identification of differential splicing in RNA-seq data. Rasche A; Lienhard M; Yaspo ML; Lehrach H; Herwig R Nucleic Acids Res; 2014 Aug; 42(14):e110. PubMed ID: 24920826 [TBL] [Abstract][Full Text] [Related]
50. Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis. Wu H; Kirita Y; Donnelly EL; Humphreys BD J Am Soc Nephrol; 2019 Jan; 30(1):23-32. PubMed ID: 30510133 [TBL] [Abstract][Full Text] [Related]
51. PASSion: a pattern growth algorithm-based pipeline for splice junction detection in paired-end RNA-Seq data. Zhang Y; Lameijer EW; 't Hoen PA; Ning Z; Slagboom PE; Ye K Bioinformatics; 2012 Feb; 28(4):479-86. PubMed ID: 22219203 [TBL] [Abstract][Full Text] [Related]
52. Impact of sequencing depth and read length on single cell RNA sequencing data of T cells. Rizzetto S; Eltahla AA; Lin P; Bull R; Lloyd AR; Ho JWK; Venturi V; Luciani F Sci Rep; 2017 Oct; 7(1):12781. PubMed ID: 28986563 [TBL] [Abstract][Full Text] [Related]
53. Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers. Fu Y; Wu PH; Beane T; Zamore PD; Weng Z BMC Genomics; 2018 Jul; 19(1):531. PubMed ID: 30001700 [TBL] [Abstract][Full Text] [Related]
54. Forseti: A mechanistic and predictive model of the splicing status of scRNA-seq reads. He D; Gao Y; Chan SS; Quintana-Parrilla N; Patro R bioRxiv; 2024 Feb; ():. PubMed ID: 38370848 [TBL] [Abstract][Full Text] [Related]
55. ScanExitronLR: characterization and quantification of exitron splicing events in long-read RNA-seq data. Fry J; Li Y; Yang R Bioinformatics; 2022 Oct; 38(21):4966-4968. PubMed ID: 36099042 [TBL] [Abstract][Full Text] [Related]
56. BCseq: accurate single cell RNA-seq quantification with bias correction. Chen L; Zheng S Nucleic Acids Res; 2018 Aug; 46(14):e82. PubMed ID: 29718338 [TBL] [Abstract][Full Text] [Related]
57. Detecting differential usage of exons from RNA-seq data. Anders S; Reyes A; Huber W Genome Res; 2012 Oct; 22(10):2008-17. PubMed ID: 22722343 [TBL] [Abstract][Full Text] [Related]
58. clustifyr: an R package for automated single-cell RNA sequencing cluster classification. Fu R; Gillen AE; Sheridan RM; Tian C; Daya M; Hao Y; Hesselberth JR; Riemondy KA F1000Res; 2020; 9():223. PubMed ID: 32765839 [TBL] [Abstract][Full Text] [Related]
59. Single-Cell RNA-Seq Technologies and Related Computational Data Analysis. Chen G; Ning B; Shi T Front Genet; 2019; 10():317. PubMed ID: 31024627 [TBL] [Abstract][Full Text] [Related]
60. Single-cell RNA sequencing in breast cancer: Understanding tumor heterogeneity and paving roads to individualized therapy. Ding S; Chen X; Shen K Cancer Commun (Lond); 2020 Aug; 40(8):329-344. PubMed ID: 32654419 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]