These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 32502201)
1. Targeting miR-27a/VE-cadherin interactions rescues cerebral cavernous malformations in mice. Li J; Zhao Y; Choi J; Ting KK; Coleman P; Chen J; Cogger VC; Wan L; Shi Z; Moller T; Zheng X; Vadas MA; Gamble JR PLoS Biol; 2020 Jun; 18(6):e3000734. PubMed ID: 32502201 [TBL] [Abstract][Full Text] [Related]
2. KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. Cuttano R; Rudini N; Bravi L; Corada M; Giampietro C; Papa E; Morini MF; Maddaluno L; Baeyens N; Adams RH; Jain MK; Owens GK; Schwartz M; Lampugnani MG; Dejana E EMBO Mol Med; 2016 Jan; 8(1):6-24. PubMed ID: 26612856 [TBL] [Abstract][Full Text] [Related]
3. Differential angiogenesis function of CCM2 and CCM3 in cerebral cavernous malformations. Zhu Y; Wu Q; Xu JF; Miller D; Sandalcioglu IE; Zhang JM; Sure U Neurosurg Focus; 2010 Sep; 29(3):E1. PubMed ID: 20809750 [TBL] [Abstract][Full Text] [Related]
4. Regulation of vascular leak and recovery from ischemic injury by general and VE-cadherin-restricted miRNA antagonists of miR-27. Young JA; Ting KK; Li J; Moller T; Dunn L; Lu Y; Moses J; Prado-Lourenço L; Khachigian LM; Ng M; Gregory PA; Goodall GJ; Tsykin A; Lichtenstein I; Hahn CN; Tran N; Shackel N; Kench JG; McCaughan G; Vadas MA; Gamble JR Blood; 2013 Oct; 122(16):2911-9. PubMed ID: 24009229 [TBL] [Abstract][Full Text] [Related]
5. Therapeutic regulation of VE-cadherin with a novel oligonucleotide drug for diabetic eye complications using retinopathy mouse models. Ting KK; Zhao Y; Shen W; Coleman P; Yam M; Chan-Ling T; Li J; Moller T; Gillies M; Vadas MA; Gamble JR Diabetologia; 2019 Feb; 62(2):322-334. PubMed ID: 30443753 [TBL] [Abstract][Full Text] [Related]
6. A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease. McDonald DA; Shenkar R; Shi C; Stockton RA; Akers AL; Kucherlapati MH; Kucherlapati R; Brainer J; Ginsberg MH; Awad IA; Marchuk DA Hum Mol Genet; 2011 Jan; 20(2):211-22. PubMed ID: 20940147 [TBL] [Abstract][Full Text] [Related]
8. Low fluid shear stress conditions contribute to activation of cerebral cavernous malformation signalling pathways. Li J; Zhao Y; Coleman P; Chen J; Ting KK; Choi JP; Zheng X; Vadas MA; Gamble JR Biochim Biophys Acta Mol Basis Dis; 2019 Nov; 1865(11):165519. PubMed ID: 31369819 [TBL] [Abstract][Full Text] [Related]
9. The CCM1-CCM2 complex controls complementary functions of ROCK1 and ROCK2 that are required for endothelial integrity. Lisowska J; Rödel CJ; Manet S; Miroshnikova YA; Boyault C; Planus E; De Mets R; Lee HH; Destaing O; Mertani H; Boulday G; Tournier-Lasserve E; Balland M; Abdelilah-Seyfried S; Albiges-Rizo C; Faurobert E J Cell Sci; 2018 Aug; 131(15):. PubMed ID: 30030370 [TBL] [Abstract][Full Text] [Related]
10. Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Zhou Z; Tang AT; Wong WY; Bamezai S; Goddard LM; Shenkar R; Zhou S; Yang J; Wright AC; Foley M; Arthur JS; Whitehead KJ; Awad IA; Li DY; Zheng X; Kahn ML Nature; 2016 Apr; 532(7597):122-6. PubMed ID: 27027284 [TBL] [Abstract][Full Text] [Related]
11. Caveolae-mediated Tie2 signaling contributes to CCM pathogenesis in a brain endothelial cell-specific Pdcd10-deficient mouse model. Zhou HJ; Qin L; Jiang Q; Murray KN; Zhang H; Li B; Lin Q; Graham M; Liu X; Grutzendler J; Min W Nat Commun; 2021 Jan; 12(1):504. PubMed ID: 33495460 [TBL] [Abstract][Full Text] [Related]
12. Neuroinflammation Plays a Critical Role in Cerebral Cavernous Malformation Disease. Lai CC; Nelsen B; Frias-Anaya E; Gallego-Gutierrez H; Orecchioni M; Herrera V; Ortiz E; Sun H; Mesarwi OA; Ley K; Gongol B; Lopez-Ramirez MA Circ Res; 2022 Nov; 131(11):909-925. PubMed ID: 36285625 [TBL] [Abstract][Full Text] [Related]
17. mTORC1 Signaling in Brain Endothelial Progenitors Contributes to CCM Pathogenesis. Min W; Qin L; Zhang H; López-Giráldez F; Jiang N; Kim Y; Mohan VK; Su M; Murray KN; Grutzendler J; Zhou JH Circ Res; 2024 Aug; 135(4):e94-e113. PubMed ID: 38957991 [TBL] [Abstract][Full Text] [Related]
18. High-throughput sequencing of the entire genomic regions of CCM1/KRIT1, CCM2 and CCM3/PDCD10 to search for pathogenic deep-intronic splice mutations in cerebral cavernous malformations. Rath M; Jenssen SE; Schwefel K; Spiegler S; Kleimeier D; Sperling C; Kaderali L; Felbor U Eur J Med Genet; 2017 Sep; 60(9):479-484. PubMed ID: 28645800 [TBL] [Abstract][Full Text] [Related]
19. In vitro characterization of the angiogenic phenotype and genotype of the endothelia derived from sporadic cerebral cavernous malformations. Zhu Y; Wu Q; Fass M; Xu JF; You C; Müller O; Sandalcioglu IE; Zhang JM; Sure U Neurosurgery; 2011 Sep; 69(3):722-31; discussion 731-2. PubMed ID: 21471841 [TBL] [Abstract][Full Text] [Related]
20. EndMT contributes to the onset and progression of cerebral cavernous malformations. Maddaluno L; Rudini N; Cuttano R; Bravi L; Giampietro C; Corada M; Ferrarini L; Orsenigo F; Papa E; Boulday G; Tournier-Lasserve E; Chapon F; Richichi C; Retta SF; Lampugnani MG; Dejana E Nature; 2013 Jun; 498(7455):492-6. PubMed ID: 23748444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]