These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 32502390)
1. An Isoform-Selective Modulator of Cryptochrome 1 Regulates Circadian Rhythms in Mammals. Miller S; Aikawa Y; Sugiyama A; Nagai Y; Hara A; Oshima T; Amaike K; Kay SA; Itami K; Hirota T Cell Chem Biol; 2020 Sep; 27(9):1192-1198.e5. PubMed ID: 32502390 [TBL] [Abstract][Full Text] [Related]
2. The Arg-293 of Cryptochrome1 is responsible for the allosteric regulation of CLOCK-CRY1 binding in circadian rhythm. Gul S; Aydin C; Ozcan O; Gurkan B; Surme S; Baris I; Kavakli IH J Biol Chem; 2020 Dec; 295(50):17187-17199. PubMed ID: 33028638 [TBL] [Abstract][Full Text] [Related]
3. Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex. Nangle SN; Rosensweig C; Koike N; Tei H; Takahashi JS; Green CB; Zheng N Elife; 2014 Aug; 3():e03674. PubMed ID: 25127877 [TBL] [Abstract][Full Text] [Related]
4. A methylbenzimidazole derivative regulates mammalian circadian rhythms by targeting Cryptochrome proteins. Yagi M; Miller S; Nagai Y; Inuki S; Sato A; Hirota T F1000Res; 2022; 11():1016. PubMed ID: 36226040 [No Abstract] [Full Text] [Related]
5. CRY2 isoform selectivity of a circadian clock modulator with antiglioblastoma efficacy. Miller S; Kesherwani M; Chan P; Nagai Y; Yagi M; Cope J; Tama F; Kay SA; Hirota T Proc Natl Acad Sci U S A; 2022 Oct; 119(40):e2203936119. PubMed ID: 36161947 [TBL] [Abstract][Full Text] [Related]
6. Structural differences in the FAD-binding pockets and lid loops of mammalian CRY1 and CRY2 for isoform-selective regulation. Miller S; Srivastava A; Nagai Y; Aikawa Y; Tama F; Hirota T Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34172584 [TBL] [Abstract][Full Text] [Related]
7. USP7 and TDP-43: Pleiotropic Regulation of Cryptochrome Protein Stability Paces the Oscillation of the Mammalian Circadian Clock. Hirano A; Nakagawa T; Yoshitane H; Oyama M; Kozuka-Hata H; Lanjakornsiripan D; Fukada Y PLoS One; 2016; 11(4):e0154263. PubMed ID: 27123980 [TBL] [Abstract][Full Text] [Related]
8. C-H activation generates period-shortening molecules that target cryptochrome in the mammalian circadian clock. Oshima T; Yamanaka I; Kumar A; Yamaguchi J; Nishiwaki-Ohkawa T; Muto K; Kawamura R; Hirota T; Yagita K; Irle S; Kay SA; Yoshimura T; Itami K Angew Chem Int Ed Engl; 2015 Jun; 54(24):7193-7. PubMed ID: 25960183 [TBL] [Abstract][Full Text] [Related]
9. The human CRY1 tail controls circadian timing by regulating its association with CLOCK:BMAL1. Parico GCG; Perez I; Fribourgh JL; Hernandez BN; Lee HW; Partch CL Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27971-27979. PubMed ID: 33106415 [TBL] [Abstract][Full Text] [Related]
10. Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1. Michael AK; Fribourgh JL; Chelliah Y; Sandate CR; Hura GL; Schneidman-Duhovny D; Tripathi SM; Takahashi JS; Partch CL Proc Natl Acad Sci U S A; 2017 Feb; 114(7):1560-1565. PubMed ID: 28143926 [TBL] [Abstract][Full Text] [Related]
13. Distinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3(Afh) mutation. Anand SN; Maywood ES; Chesham JE; Joynson G; Banks GT; Hastings MH; Nolan PM J Neurosci; 2013 Apr; 33(17):7145-53. PubMed ID: 23616524 [TBL] [Abstract][Full Text] [Related]
14. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Busino L; Bassermann F; Maiolica A; Lee C; Nolan PM; Godinho SI; Draetta GF; Pagano M Science; 2007 May; 316(5826):900-4. PubMed ID: 17463251 [TBL] [Abstract][Full Text] [Related]
15. Expression of circadian core clock genes in fibroblasts of human gingiva and periodontal ligament is modulated by L-Mimosine and hypoxia in monolayer and spheroid cultures. Janjić K; Kurzmann C; Moritz A; Agis H Arch Oral Biol; 2017 Jul; 79():95-99. PubMed ID: 28350992 [TBL] [Abstract][Full Text] [Related]
16. Dynamics at the serine loop underlie differential affinity of cryptochromes for CLOCK:BMAL1 to control circadian timing. Fribourgh JL; Srivastava A; Sandate CR; Michael AK; Hsu PL; Rakers C; Nguyen LT; Torgrimson MR; Parico GCG; Tripathi S; Zheng N; Lander GC; Hirota T; Tama F; Partch CL Elife; 2020 Feb; 9():. PubMed ID: 32101164 [TBL] [Abstract][Full Text] [Related]
17. Spatiotemporal separation of PER and CRY posttranslational regulation in the mammalian circadian clock. St John PC; Hirota T; Kay SA; Doyle FJ Proc Natl Acad Sci U S A; 2014 Feb; 111(5):2040-5. PubMed ID: 24449901 [TBL] [Abstract][Full Text] [Related]
18. USP2a protein deubiquitinates and stabilizes the circadian protein CRY1 in response to inflammatory signals. Tong X; Buelow K; Guha A; Rausch R; Yin L J Biol Chem; 2012 Jul; 287(30):25280-91. PubMed ID: 22669941 [TBL] [Abstract][Full Text] [Related]
19. Delayed Cryptochrome Degradation Asymmetrically Alters the Daily Rhythm in Suprachiasmatic Clock Neuron Excitability. Wegner S; Belle MDC; Hughes ATL; Diekman CO; Piggins HD J Neurosci; 2017 Aug; 37(33):7824-7836. PubMed ID: 28698388 [TBL] [Abstract][Full Text] [Related]
20. Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Schmalen I; Reischl S; Wallach T; Klemz R; Grudziecki A; Prabu JR; Benda C; Kramer A; Wolf E Cell; 2014 May; 157(5):1203-15. PubMed ID: 24855952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]