These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 3250244)

  • 1. Development of membrane-based biosensors: measurement of current from photocycling bacteriorhodopsin on patch clamp electrodes.
    Yager P
    Adv Exp Med Biol; 1988; 238():257-67. PubMed ID: 3250244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of a light-induced pH gradient on purple-to-blue and purple-to-red transitions of bacteriorhodopsin.
    Nasuda-Kouyama A; Fukuda K; Iio T; Kouyama T
    Biochemistry; 1990 Jul; 29(29):6778-88. PubMed ID: 2168741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of charged lipids on bacteriorhodopsin membrane reconstitution and its photochemical activities.
    Wang Z; Bai J; Xu Y
    Biochem Biophys Res Commun; 2008 Jul; 371(4):814-7. PubMed ID: 18460340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacteriorhodopsin-based photo-electrochemical cell.
    Chu LK; Yen CW; El-Sayed MA
    Biosens Bioelectron; 2010 Oct; 26(2):620-6. PubMed ID: 20719494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Photoelectric Biomolecular Switch at a Microcavity-Supported Lipid Bilayer.
    Berselli GB; Gimenez AV; O'Connor A; Keyes TE
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):29158-29169. PubMed ID: 34121400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-induced potential and current across a large bacteriorhodopsin-asolectin planar membrane stabilized on a polyacrylamide gel surface.
    Setaka M; Satoh N; Kobayashi T; Hongo T; Kwan T; Yamaguchi A; Futai M
    J Biochem; 1986 Mar; 99(3):777-83. PubMed ID: 2423507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmembranous incorporation of photoelectrically active bacteriorhodopsin in planar lipid bilayers.
    Bamberg E; Dencher NA; Fahr A; Heyn MP
    Proc Natl Acad Sci U S A; 1981 Dec; 78(12):7502-6. PubMed ID: 6278476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochemical cycle and light-dark adaptation of monomeric and aggregated bacteriorhodopsin in various lipid environments.
    Dencher NA; Kohl KD; Heyn MP
    Biochemistry; 1983 Mar; 22(6):1323-34. PubMed ID: 6838856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deprotonation of the Schiff base of bacteriorhodopsin is obligate in light-induced proton pumping.
    Longstaff C; Rando RR
    Biochemistry; 1987 Sep; 26(19):6107-13. PubMed ID: 2825771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics and mechanisms of the two types of photoelectric differential response of bacteriorhodopsin-based photocell.
    Yao B; Wang Y; Lei M; Zheng Y
    Biosens Bioelectron; 2003 Dec; 19(4):283-7. PubMed ID: 14615084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoelectric response of purple membrane fragments adsorbed on a lipid monolayer supported by mercury and characterization of the resulting interphase.
    Dolfi A; Aloisi G; Guidelli R
    Bioelectrochemistry; 2002 Sep; 57(2):155-66. PubMed ID: 12160613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delipidation of bacteriorhodopsin and reconstitution with exogenous phospholipid.
    Huang KS; Bayley H; Khorana HG
    Proc Natl Acad Sci U S A; 1980 Jan; 77(1):323-7. PubMed ID: 6928624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid pH change due to bacteriorhodopsin measured with a tin-oxide electrode.
    Robertson B; Lukashev EP
    Biophys J; 1995 Apr; 68(4):1507-17. PubMed ID: 7787036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DC photoelectric signals from bacteriorhodopsin adsorbed on lipid monolayers and thiol/lipid bilayers supported by mercury.
    Dolfi A; Tadini Buoninsegni F; Moncelli MR; Guidelli R
    Bioelectrochemistry; 2002 May; 56(1-2):151-6. PubMed ID: 12009463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimeric-like kinetic cooperativity of the bacteriorhodopsin molecules in purple membranes.
    Tokaji Z
    Biophys J; 1993 Sep; 65(3):1130-4. PubMed ID: 8241392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refolding and proton pumping activity of a polyethylene glycol-bacteriorhodopsin water-soluble conjugate.
    Sirokmán G; Fasman GD
    Protein Sci; 1993 Jul; 2(7):1161-70. PubMed ID: 8358299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous transmembrane insertion of membrane proteins into lipid vesicles facilitated by short-chain lecithins.
    Dencher NA
    Biochemistry; 1986 Mar; 25(5):1195-200. PubMed ID: 3964667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-lifetime spectrophotometry of deoxycholate-purified bacteriorhodopsin reconstituted into asolectin vesicles.
    Krupinski J; Hammes GG
    Biochemistry; 1985 Nov; 24(24):6963-72. PubMed ID: 4074733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of generation and regulation of photopotential by bacteriorhodopsin in bimolecular lipid membrane.
    Ormos P; Dancsházy Z; Karvaly B
    Biochim Biophys Acta; 1978 Aug; 503(2):304-15. PubMed ID: 28756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochemistry of monomethylated and permethylated bacteriorhodopsin.
    Govindjee R; Dancshazy Z; Ebrey TG; Longstaff C; Rando RR
    Biophys J; 1988 Sep; 54(3):557-62. PubMed ID: 3207841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.