These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32502888)

  • 1. Enhancing the tolerance of Clostridium saccharoperbutylacetonicum to lignocellulosic-biomass-derived inhibitors for efficient biobutanol production by overexpressing efflux pumps genes from Pseudomonas putida.
    Jiménez-Bonilla P; Zhang J; Wang Y; Blersch D; de-Bashan LE; Guo L; Wang Y
    Bioresour Technol; 2020 Sep; 312():123532. PubMed ID: 32502888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased Butyrate Production in Clostridium saccharoperbutylacetonicum from Lignocellulose-Derived Sugars.
    Baur ST; Markussen S; Di Bartolomeo F; Poehlein A; Baker A; Jenkinson ER; Daniel R; Wentzel A; Dürre P
    Appl Environ Microbiol; 2022 Apr; 88(7):e0241921. PubMed ID: 35311509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass.
    Baral NR; Shah A
    Appl Microbiol Biotechnol; 2014 Nov; 98(22):9151-72. PubMed ID: 25267161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of acid re-assimilation and biosolvent production in Clostridium saccharoperbutylacetonicum through metabolic engineering for efficient biofuel production from lignocellulosic biomass.
    Wang P; Zhang J; Feng J; Wang S; Guo L; Wang Y; Lee YY; Taylor S; McDonald T; Wang Y
    Bioresour Technol; 2019 Jun; 281():217-225. PubMed ID: 30822643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient bio-butanol production from lignocellulosic waste by elucidating the mechanisms of Clostridium acetobutylicum response to phenolic inhibitors.
    Luo H; Zheng P; Bilal M; Xie F; Zeng Q; Zhu C; Yang R; Wang Z
    Sci Total Environ; 2020 Mar; 710():136399. PubMed ID: 31923698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Investigation of Autolysin Genes in Clostridium saccharoperbutylacetonicum Strain N1-4 for Enhanced Biobutanol Production.
    Jiménez-Bonilla P; Feng J; Wang S; Zhang J; Wang Y; Blersch D; de-Bashan LE; Gaillard P; Guo L; Wang Y
    Appl Environ Microbiol; 2021 Mar; 87(7):. PubMed ID: 33514516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of butanol by Clostridium saccharoperbutylacetonicum N1-4 from palm kernel cake in acetone-butanol-ethanol fermentation using an empirical model.
    Shukor H; Al-Shorgani NKN; Abdeshahian P; Hamid AA; Anuar N; Rahman NA; Kalil MS
    Bioresour Technol; 2014 Oct; 170():565-573. PubMed ID: 25171212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of the Acetone/Butanol Ratio during Fermentation of Corn Stover-Derived Hydrolysate by Clostridium beijerinckii Strain NCIMB 8052.
    Liu ZY; Yao XQ; Zhang Q; Liu Z; Wang ZJ; Zhang YY; Li FL
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of solvent production by overexpressing key genes of the acetone-butanol-ethanol fermentation pathway in Clostridium saccharoperbutylacetonicum N1-4.
    Wang S; Dong S; Wang Y
    Bioresour Technol; 2017 Dec; 245(Pt A):426-433. PubMed ID: 28898840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biobutanol production from rice straw by a non acetone producing Clostridium sporogenes BE01.
    Gottumukkala LD; Parameswaran B; Valappil SK; Mathiyazhakan K; Pandey A; Sukumaran RK
    Bioresour Technol; 2013 Oct; 145():182-7. PubMed ID: 23465538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced robustness in acetone-butanol-ethanol fermentation with engineered Clostridium beijerinckii overexpressing adhE2 and ctfAB.
    Lu C; Yu L; Varghese S; Yu M; Yang ST
    Bioresour Technol; 2017 Nov; 243():1000-1008. PubMed ID: 28747008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical model to appraise the inhibitory effect of phenolic compounds derived from lignin for biobutanol production.
    Chen WH; Zeng YR
    Bioresour Technol; 2018 Aug; 261():44-51. PubMed ID: 29653333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioprospecting of Native Efflux Pumps To Enhance Furfural Tolerance in Ethanologenic
    Kurgan G; Panyon LA; Rodriguez-Sanchez Y; Pacheco E; Nieves LM; Mann R; Nielsen DR; Wang X
    Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30635383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. n-Butanol production from lignocellulosic biomass hydrolysates without detoxification by Clostridium tyrobutyricum Δack-adhE2 in a fibrous-bed bioreactor.
    Li J; Du Y; Bao T; Dong J; Lin M; Shim H; Yang ST
    Bioresour Technol; 2019 Oct; 289():121749. PubMed ID: 31323711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a High-Efficiency Transformation Method and Implementation of Rational Metabolic Engineering for the Industrial Butanol Hyperproducer Clostridium saccharoperbutylacetonicum Strain N1-4.
    Herman NA; Li J; Bedi R; Turchi B; Liu X; Miller MJ; Zhang W
    Appl Environ Microbiol; 2017 Jan; 83(2):. PubMed ID: 27836845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The significance of proline on lignocellulose-derived inhibitors tolerance in Clostridium acetobutylicum ATCC 824.
    Liao Z; Guo X; Hu J; Suo Y; Fu H; Wang J
    Bioresour Technol; 2019 Jan; 272():561-569. PubMed ID: 30396113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling the mechanism of furfural tolerance in engineered
    Zou L; Jin X; Tao Y; Zheng Z; Ouyang J
    Front Microbiol; 2022; 13():1035263. PubMed ID: 36338095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of sucrose metabolism in Clostridium saccharoperbutylacetonicum N1-4 through metabolic engineering for improved acetone-butanol-ethanol (ABE) fermentation.
    Zhang J; Wang P; Wang X; Feng J; Sandhu HS; Wang Y
    Bioresour Technol; 2018 Dec; 270():430-438. PubMed ID: 30245312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient production of butyric acid from lignocellulosic biomass by revealing the mechanisms of Clostridium tyrobutyricum tolerance to phenolic inhibitors.
    Luo L; Wei H; Kong D; Wan L; Jiang Y; Qin S; Suo Y
    Bioresour Technol; 2024 Mar; 396():130427. PubMed ID: 38336212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clostridium species strain BOH3 tolerates and transforms inhibitors from horticulture waste hydrolysates.
    Yan Y; He J
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):6289-6297. PubMed ID: 28676908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.