These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 32502907)
1. Klebsiella sp. PD3, a phenanthrene (PHE)-degrading strain with plant growth promoting properties enhances the PHE degradation and stress tolerance in rice plants. Li X; Peng D; Zhang Y; Ju D; Guan C Ecotoxicol Environ Saf; 2020 Sep; 201():110804. PubMed ID: 32502907 [TBL] [Abstract][Full Text] [Related]
2. Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress. Mitra S; Pramanik K; Ghosh PK; Soren T; Sarkar A; Dey RS; Pandey S; Maiti TK Microbiol Res; 2018 May; 210():12-25. PubMed ID: 29625654 [TBL] [Abstract][Full Text] [Related]
3. Physiological and biochemical responses of rice (Oryza sativa L.) to phenanthrene and pyrene. Li JH; Gao Y; Wu SC; Cheung KC; Wang XR; Wong MH Int J Phytoremediation; 2008; 10(2):104-16. PubMed ID: 18709924 [TBL] [Abstract][Full Text] [Related]
4. Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Kumar A; Singh S; Mukherjee A; Rastogi RP; Verma JP Microbiol Res; 2021 Jan; 242():126616. PubMed ID: 33115624 [TBL] [Abstract][Full Text] [Related]
5. Characterization of cadmium-resistant Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium. Pramanik K; Mitra S; Sarkar A; Soren T; Maiti TK Environ Sci Pollut Res Int; 2017 Nov; 24(31):24419-24437. PubMed ID: 28895046 [TBL] [Abstract][Full Text] [Related]
6. Rhizoremediation prospects of Polyaromatic hydrocarbon degrading rhizobacteria, that facilitate glutathione and glutathione-S-transferase mediated stress response, and enhance growth of rice plants in pyrene contaminated soil. Singha LP; Sinha N; Pandey P Ecotoxicol Environ Saf; 2018 Nov; 164():579-588. PubMed ID: 30149357 [TBL] [Abstract][Full Text] [Related]
7. Efficient biodegradation of phenanthrene by a novel strain Massilia sp. WF1 isolated from a PAH-contaminated soil. Wang H; Lou J; Gu H; Luo X; Yang L; Wu L; Liu Y; Wu J; Xu J Environ Sci Pollut Res Int; 2016 Jul; 23(13):13378-88. PubMed ID: 27026540 [TBL] [Abstract][Full Text] [Related]
8. Phytoremediation effect of Medicago sativa colonized by Piriformospora indica in the phenanthrene and cadmium co-contaminated soil. Li L; Zhu P; Wang X; Zhang Z BMC Biotechnol; 2020 Apr; 20(1):20. PubMed ID: 32345267 [TBL] [Abstract][Full Text] [Related]
9. Bioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stress. Mitra S; Pramanik K; Sarkar A; Ghosh PK; Soren T; Maiti TK Ecotoxicol Environ Saf; 2018 Jul; 156():183-196. PubMed ID: 29550436 [TBL] [Abstract][Full Text] [Related]
10. Effect of microorganisms on reducing cadmium uptake and toxicity in rice (Oryza sativa L.). Treesubsuntorn C; Dhurakit P; Khaksar G; Thiravetyan P Environ Sci Pollut Res Int; 2018 Sep; 25(26):25690-25701. PubMed ID: 28480489 [TBL] [Abstract][Full Text] [Related]
11. Interactions of rice (Oryza sativa L.) and PAH-degrading bacteria (Acinetobacter sp.) on enhanced dissipation of spiked phenanthrene and pyrene in waterlogged soil. Gao Y; Yu XZ; Wu SC; Cheung KC; Tam NF; Qian PY; Wong MH Sci Total Environ; 2006 Dec; 372(1):1-11. PubMed ID: 17081596 [TBL] [Abstract][Full Text] [Related]
12. The role of Ni- and Cd-resistant rhizobacteria in promoting the growth of rice seedlings and alleviating the combined phytotoxicity of Ni and Cd. Zhou W; Yang J; Qi L; Wang G; Guan C; Li Q Ecotoxicol Environ Saf; 2024 Oct; 285():117138. PubMed ID: 39353377 [TBL] [Abstract][Full Text] [Related]
13. Characterization and genomic function analysis of phenanthrene-degrading bacterium Ji D; Mao Z; He J; Peng S; Wen H J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(5):549-562. PubMed ID: 31913782 [TBL] [Abstract][Full Text] [Related]
14. [Study on phytoremediation of phenanthrene-contaminated soil with alfalfa (Medicago sativa L.)]. Fan SX; Li PJ; Gong ZQ; He N; Zhang LH; Ren WX; Verkhozina VA Huan Jing Ke Xue; 2007 Sep; 28(9):2080-4. PubMed ID: 17990561 [TBL] [Abstract][Full Text] [Related]
15. Potential of Endophytic Bacterium Paenibacillus sp. PHE-3 Isolated from Plantago asiatica L. for Reduction of PAH Contamination in Plant Tissues. Zhu X; Jin L; Sun K; Li S; Ling W; Li X Int J Environ Res Public Health; 2016 Jun; 13(7):. PubMed ID: 27347988 [TBL] [Abstract][Full Text] [Related]
16. Dissipation gradients of phenanthrene and pyrene in the Rice rhizosphere. Gao Y; Wu SC; Yu XZ; Wong MH Environ Pollut; 2010 Aug; 158(8):2596-603. PubMed ID: 20542360 [TBL] [Abstract][Full Text] [Related]
17. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Sapre S; Gontia-Mishra I; Tiwari S Microbiol Res; 2018 Jan; 206():25-32. PubMed ID: 29146257 [TBL] [Abstract][Full Text] [Related]
18. Degradation pathways of 1-methylphenanthrene in bacterial Sphingobium sp. MP9-4 isolated from petroleum-contaminated soil. Zhong J; Luo L; Chen B; Sha S; Qing Q; Tam NF; Zhang Y; Luan T Mar Pollut Bull; 2017 Jan; 114(2):926-933. PubMed ID: 27865521 [TBL] [Abstract][Full Text] [Related]
19. Inoculating plants with the endophytic bacterium Pseudomonas sp. Ph6-gfp to reduce phenanthrene contamination. Sun K; Liu J; Gao Y; Sheng Y; Kang F; Waigi MG Environ Sci Pollut Res Int; 2015 Dec; 22(24):19529-37. PubMed ID: 26263885 [TBL] [Abstract][Full Text] [Related]
20. Soil phenanthrene phytoremediation capacity in bacteria-assisted Spartina densiflora. Mesa-Marín J; Barcia-Piedras JM; Mateos-Naranjo E; Cox L; Real M; Pérez-Romero JA; Navarro-Torre S; Rodríguez-Llorente ID; Pajuelo E; Parra R; Redondo-Gómez S Ecotoxicol Environ Saf; 2019 Oct; 182():109382. PubMed ID: 31255867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]