These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 32503016)

  • 21. Dislocation-Governed Plastic Deformation and Fracture Toughness of Nanotwinned Magnesium.
    Zhou L; Guo YF
    Materials (Basel); 2015 Aug; 8(8):5250-5264. PubMed ID: 28793502
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Exceptional Strong Face-centered Cubic Phase and Semi-coherent Phase Boundary in a Eutectic Dual-phase High Entropy Alloy AlCoCrFeNi.
    Wang Q; Lu Y; Yu Q; Zhang Z
    Sci Rep; 2018 Oct; 8(1):14910. PubMed ID: 30297848
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Data compilation on the effect of grain size, temperature, and texture on the strength of a single-phase FCC MnFeNi medium-entropy alloy.
    Schneider M; Werner F; Langenkämper D; Reinhart C; Laplanche G
    Data Brief; 2020 Feb; 28():104807. PubMed ID: 31871972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of chemical-reaction-induced tensile deformation of an Fe/Ni/Cr alloy revealed by reactive atomistic simulations.
    Wang Y; Zhao H; Liu C; Ootani Y; Ozawa N; Kubo M
    RSC Adv; 2023 Feb; 13(10):6630-6636. PubMed ID: 36860537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microstructure and composition dependence of mechanical characteristics of nanoimprinted AlCoCrFeNi high-entropy alloys.
    Doan DQ; Fang TH; Chen TH
    Sci Rep; 2021 Jul; 11(1):13680. PubMed ID: 34211093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A jogged dislocation governed strengthening mechanism in nanotwinned metals.
    Zhou H; Li X; Qu S; Yang W; Gao H
    Nano Lett; 2014 Sep; 14(9):5075-80. PubMed ID: 25133875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Situ Study of the Microstructural Evolution of Nickel-Based Alloy with High Proportional Twin Boundaries Obtained by High-Temperature Annealing.
    Zhang C; Sun M; Ya R; Li L; Cui J; Li Z; Tian W
    Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049182
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Revealing the maximum strength in nanotwinned copper.
    Lu L; Chen X; Huang X; Lu K
    Science; 2009 Jan; 323(5914):607-10. PubMed ID: 19179523
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tailoring phase transformation strengthening and plasticity of nanostructured high entropy alloys.
    Zhao YF; Feng XB; Zhang JY; Lu Y; Wu SH; Wang YQ; Wu K; Liu G; Sun J
    Nanoscale; 2020 Jul; 12(26):14135-14149. PubMed ID: 32597912
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasticity Improvement in a Co-Rich Co
    Li Y; Chen Y; Nutor RK; Wang N; Cao Q; Wang X; Zhang D; Jiang JZ
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigating the dislocation reactions on Σ3{111} twin boundary during deformation twin nucleation process in an ultrafine-grained high-manganese steel.
    Hung CY; Shimokawa T; Bai Y; Tsuji N; Murayama M
    Sci Rep; 2021 Sep; 11(1):19298. PubMed ID: 34588568
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Small-Scale Plastic Deformation of Nanocrystalline High Entropy Alloy.
    Mridha S; Komarasamy M; Bhowmick S; Mishra RS; Mukherjee S
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing the microstructure and deformation mechanism of an FeCoCrNiAl0.5 high entropy alloy during nanoscratching: a combined atomistic and physical model study.
    Zhang Y; Yang W; Peng J; Wang A; Fan W; Li J
    RSC Adv; 2024 Jun; 14(26):18258-18270. PubMed ID: 38911269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A correlation between grain boundary character and deformation twin nucleation mechanism in coarse-grained high-Mn austenitic steel.
    Hung CY; Bai Y; Shimokawa T; Tsuji N; Murayama M
    Sci Rep; 2021 Apr; 11(1):8468. PubMed ID: 33875690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scale law of complex deformation transitions of nanotwins in stainless steel.
    Chen AY; Zhu LL; Sun LG; Liu JB; Wang HT; Wang XY; Yang JH; Lu J
    Nat Commun; 2019 Mar; 10(1):1403. PubMed ID: 30926796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unusual plastic deformation behavior of nanotwinned Cu/high entropy alloy FeCoCrNi nanolaminates.
    Zhao YF; Zhang JY; Wang YQ; Wu K; Liu G; Sun J
    Nanoscale; 2019 Jun; 11(23):11340-11350. PubMed ID: 31166340
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys.
    Vaidya M; Pradeep KG; Murty BS; Wilde G; Divinski SV
    Sci Rep; 2017 Sep; 7(1):12293. PubMed ID: 28947771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal-Glass High-Entropy Nanocomposites with Near Theoretical Compressive Strength and Large Deformability.
    Wu G; Balachandran S; Gault B; Xia W; Liu C; Rao Z; Wei Y; Liu S; Lu J; Herbig M; Lu W; Dehm G; Li Z; Raabe D
    Adv Mater; 2020 Aug; 32(34):e2002619. PubMed ID: 32686224
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Data compilation regarding the effects of grain size and temperature on the strength of the single-phase FCC CrFeNi medium-entropy alloy.
    Schneider M; Laplanche G
    Data Brief; 2021 Feb; 34():106712. PubMed ID: 33490332
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoprecipitate-Strengthened High-Entropy Alloys.
    Liu L; Zhang Y; Han J; Wang X; Jiang W; Liu CT; Zhang Z; Liaw PK
    Adv Sci (Weinh); 2021 Dec; 8(23):e2100870. PubMed ID: 34677914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.