These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 32503339)

  • 1. The Role of Histone Acetylation and the Microbiome in Phytochemical Efficacy for Cardiovascular Diseases.
    Evans LW; Athukorala M; Martinez-Guryn K; Ferguson BS
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32503339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigallocatechin-3-gallate (EGCG) Alters Histone Acetylation and Methylation and Impacts Chromatin Architecture Profile in Human Endothelial Cells.
    Ciesielski O; Biesiekierska M; Balcerczyk A
    Molecules; 2020 May; 25(10):. PubMed ID: 32429384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Food Bioactive HDAC Inhibitors in the Epigenetic Regulation of Heart Failure.
    Evans LW; Ferguson BS
    Nutrients; 2018 Aug; 10(8):. PubMed ID: 30126190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. (-)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells.
    Nandakumar V; Vaid M; Katiyar SK
    Carcinogenesis; 2011 Apr; 32(4):537-44. PubMed ID: 21209038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutriepigenetics and cardiovascular disease.
    Kalea AZ; Drosatos K; Buxton JL
    Curr Opin Clin Nutr Metab Care; 2018 Jul; 21(4):252-259. PubMed ID: 29847446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review.
    Vahid F; Zand H; Nosrat-Mirshekarlou E; Najafi R; Hekmatdoost A
    Gene; 2015 May; 562(1):8-15. PubMed ID: 25701602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigallocatechin gallate reverses cTnI-low expression-induced age-related heart diastolic dysfunction through histone acetylation modification.
    Pan B; Quan J; Liu L; Xu Z; Zhu J; Huang X; Tian J
    J Cell Mol Med; 2017 Oct; 21(10):2481-2490. PubMed ID: 28382690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone Deacetylase Modifications by Probiotics in Colorectal Cancer.
    Salek Farrokhi A; Mohammadlou M; Abdollahi M; Eslami M; Yousefi B
    J Gastrointest Cancer; 2020 Sep; 51(3):754-764. PubMed ID: 31808058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetylation in cardiovascular diseases: Molecular mechanisms and clinical implications.
    Yang M; Zhang Y; Ren J
    Biochim Biophys Acta Mol Basis Dis; 2020 Oct; 1866(10):165836. PubMed ID: 32413386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dysregulation of histone acetyltransferases and deacetylases in cardiovascular diseases.
    Wang Y; Miao X; Liu Y; Li F; Liu Q; Sun J; Cai L
    Oxid Med Cell Longev; 2014; 2014():641979. PubMed ID: 24693336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Phytochemicals and Dietary Patterns on Epigenome and Cancer.
    Zam W; Khadour A
    Nutr Cancer; 2017; 69(2):184-200. PubMed ID: 28094554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green tea polyphenols increase p53 transcriptional activity and acetylation by suppressing class I histone deacetylases.
    Thakur VS; Gupta K; Gupta S
    Int J Oncol; 2012 Jul; 41(1):353-61. PubMed ID: 22552582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EGCG prevents pressure overload‑induced myocardial remodeling by downregulating overexpression of HDAC5 in mice.
    Han X; Peng C; Huang L; Luo X; Mao Q; Wu S; Zhang H
    Int J Mol Med; 2022 Jan; 49(1):. PubMed ID: 34841436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary regulation of histone acetylases and deacetylases for the prevention of metabolic diseases.
    Pham TX; Lee J
    Nutrients; 2012 Nov; 4(12):1868-86. PubMed ID: 23363995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulforaphane modulates telomerase activity via epigenetic regulation in prostate cancer cell lines.
    Abbas A; Hall JA; Patterson WL; Ho E; Hsu A; Al-Mulla F; Georgel PT
    Biochem Cell Biol; 2016 Feb; 94(1):71-81. PubMed ID: 26458818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigallocatechin-3 gallate prevents pressure overload-induced heart failure by up-regulating SERCA2a via histone acetylation modification in mice.
    Liu L; Zhao W; Liu J; Gan Y; Liu L; Tian J
    PLoS One; 2018; 13(10):e0205123. PubMed ID: 30286210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytochemicals based chemopreventive and chemotherapeutic strategies and modern technologies to overcome limitations for better clinical applications.
    Singh VK; Arora D; Ansari MI; Sharma PK
    Phytother Res; 2019 Dec; 33(12):3064-3089. PubMed ID: 31515899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The "Big Five" Phytochemicals Targeting Cancer Stem Cells: Curcumin, EGCG, Sulforaphane, Resveratrol and Genistein.
    Naujokat C; McKee DL
    Curr Med Chem; 2021; 28(22):4321-4342. PubMed ID: 32107991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Histone acetylation and congenital heart diseases].
    Xu J; Wang HJ; Huang GY
    Zhonghua Er Ke Za Zhi; 2013 Jul; 51(7):552-4. PubMed ID: 24267144
    [No Abstract]   [Full Text] [Related]  

  • 20. Protein acetylation in the cardiorenal axis: the promise of histone deacetylase inhibitors.
    Bush EW; McKinsey TA
    Circ Res; 2010 Feb; 106(2):272-84. PubMed ID: 20133912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.